1887

Abstract

A novel siderophore-producing actinomycete, designated PL19, was isolated from the Scots-pine needle-like leaves collected from TNAU campus, Coimbatore, India. The isolate was chemoorganotrophic in nutrition and able to grow at 30 °C, and the optimum pH and NaCl facilitated the growth pH 6–11 and 0–8 % (w/v), respectively. The cells are filamentous and the mycelia formed are basically of wide and intricately branched substrate mycelium from which aerial mycelia arises, later gets differentiated into spores that are warty and arranged spirally. The 16S rRNA gene of strain PL19 was sequenced and was highly similar to the type strains of species of the genus , including RC1831 (98.8 % pairwise similarity), GIMN4.003 (98.2 %), SCSIO 01248 (98.0 %), R97 (97.9 %), C60 (97.8 %) and NBRC 14749 (97.2 %), all of which were subjected to taxonomical characterization using a polyphasic approach. The strains showed unique carbon utilization patterns, and it possesses iso-C anteiso-C and anteiso-C as a major cellular fatty acids. The cell-wall was dominated with -type diaminopimelic acid, and the menaquinone type was MK-9(H, H). These chemotaxonomic evidences placed strain PL19 within the genus . The determination of G+C ratio (69.5 mol%) and DNA–DNA hybridization values (13.4–31.8 % with the phylogenetically related species) helped in further hierarchical classification of strain PL19. Based on morphological, physiological and chemotaxonomic data as well as DNA–DNA hybridization values, strain PL19 could be distinguished from the evolutionarily closest species currently available. All these collective data show that strain PL19 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is PL19 (=NRRL B-24728=ICMP 17783).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001336
2016-10-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/4204.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001336&mimeType=html&fmt=ahah

References

  1. Bozzola J. J., Russell L. D.. 1998; Survey of Biological Ultrastructure. Electron Microscopy 450, 2nd edn. Sudbury, MS: Jones & Bartlett;
    [Google Scholar]
  2. Cappuccino J. G., Sherman N.. 2014; Microbiology a Laboratory Manual, 10th edn. , pp.201–208 USA: Pearson Education;
    [Google Scholar]
  3. Collins M. D.. 1985; Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics, pp267–287 Edited by Goodfellow M., Minnikin D. E.. London: Academic Press;
    [Google Scholar]
  4. Collins C. H., Lyne P. M., Grange J. M., Falkinham J. O. III. 2004; Collins and Lyne’s Microbiological Methods, 8th edn. pp.168–186 London:: Arnold Publishers;
    [Google Scholar]
  5. DeLong E. F.. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A89:5685–5689 [CrossRef][PubMed]
    [Google Scholar]
  6. Dimkpa C., Svatos A., Merten D., Büchel G., Kothe E.. 2008; Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol54:163–172 [CrossRef][PubMed]
    [Google Scholar]
  7. Embley T. M., Stackebrandt E.. 1994; The molecular phylogeny and systematics of the actinomycetes. Annu Rev Microbiol48:257–289 [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  9. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  10. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  11. Golińska P., Dahm H.. 2013; Antagonistic properties of Streptomyces isolated from forest soils against fungal pathogens of pine seedlings. Dendrobiology69:87–97 [CrossRef]
    [Google Scholar]
  12. Hasegawa T., Takizawa M., Tanida S.. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol29:319–322 [CrossRef]
    [Google Scholar]
  13. Hozzein W. N., Goodfellow M.. 2007; Streptomyces synnematoformans sp. nov., a novel actinomycete isolated from a sand dune soil in Egypt. Int J Syst Evol Microbiol57:2009–2013 [CrossRef][PubMed]
    [Google Scholar]
  14. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  15. Kroppenstedt R. M.. 1985; Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics , pp.173–199 Edited by Goodfellow M., Minnikin D. E.. New York: Academic Press;
    [Google Scholar]
  16. Kämpfer P.. 2012; Genus I Streptomyces. In The Actinobacteria, Part-A and B. Bergey’s Manual of Systematic Bacteriology, 2nd edn.vol. 5 , pp.1455–1804 . Edited by Goodfellow M., Kämpfer P., Busse H. J., Trujillo M. E., Suzuki K., Ludwig W., Whitman W. B.. . Springer;[CrossRef]
    [Google Scholar]
  17. Kämpfer P., Glaeser S. P., Parkes L., van Keulen G., Dyson P.. 2014; The family Streptomycetaceae. In The Prokaryotes: Actinobacteria, Part a and b, 4th edn.vol. 5 pp.889–1010 Edited by Rosenberg E., Delong E. F., Lory S., Stackebrandt E., Thompson F.. Berlin:: Springer;
    [Google Scholar]
  18. Macagnan D., Pomella A. W. V., deSouza J. T., Romeiro R. S.. 2008; Production of lytic enzymes and siderophores, and inhibition of germination of basidiospores of Moniliophthora (ex Crinipellis) perniciosa by phylloplane actinomycetes. Biological Control47:309–314 [CrossRef]
    [Google Scholar]
  19. Madhaiyan M., Kim B. Y., Poonguzhali S., Kwon S. W., Song M. H., Ryu J. H., Go S. J., Koo B. S., Sa T. M.. 2007; Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice. Int J Syst Evol Microbiol57:326–331 [CrossRef][PubMed]
    [Google Scholar]
  20. Madhaiyan M., Hu C. J., Kim S. J., Weon H. Y., Kwon S. W., Ji L.. 2013a; Aureimonas jatrophae sp. nov. and Aureimonas phyllosphaerae sp. nov., leaf-associated bacteria isolated from Jatropha curcas L. Int J Syst Evol Microbiol63:1702–1708 [CrossRef][PubMed]
    [Google Scholar]
  21. Madhaiyan M., Jin T. Y., Roy J. J., Kim S. J., Weon H. Y., Kwon S. W., Ji L.. 2013b; Pleomorphomonas diazotrophica sp. nov., an endophytic N-fixing bacterium isolated from root tissue of Jatropha curcas L. Int J Syst Evol Microbiol63:2477–2483 [CrossRef][PubMed]
    [Google Scholar]
  22. Manfio G. P., Zakrzewska-Czerwinska J., Atlan E., Goodfellow M.. 1995; Towards minimal standards for the description of Streptomyces species. Biotechnologia7–8:242–253
    [Google Scholar]
  23. Mao J., Tang Q., Zhang Z., Wang W., Wei D., Huang Y., Liu Z., Shi Y., Goodfellow M.. 2007; Streptomyces radiopugnans sp. nov., a radiation-resistant actinomycete isolated from radiation-polluted soil in China. Int J Syst Evol Microbiol57:2578–2582 [CrossRef][PubMed]
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high- performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  25. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  26. Parte A. C.. 2014; LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  27. Pepper I., Gerba C., Gentry T.. 2015; Environmental Microbiology, 3rd edn. p.728 San Diego, CA:: Academic Press;
    [Google Scholar]
  28. Poonguzhali S., Madhaiyan M., Sa T.. 2006; Cultivation-dependent characterization of rhizobacterial communities from field grown Chinese cabbage Brassica campestris ssp pekinensis and screening of traits for potential plant growth promotion. Plant Soil286:167–180 [CrossRef]
    [Google Scholar]
  29. Ray L., Mishra S. R., Panda A. N., Rastogi G., Pattanaik A. K., Adhya T. K., Suar M., Raina V.. 2014; Streptomyces barkulensis sp. nov., isolated from an estuarine lake. Int J Syst Evol Microbiol64:1365–1372 [CrossRef][PubMed]
    [Google Scholar]
  30. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  31. Sasser M.. 2001; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;
  32. Schwyn B., Neilands J. B.. 1987; Universal chemical assay for the detection and determination of siderophores. Anal Biochem160:47–56 [CrossRef][PubMed]
    [Google Scholar]
  33. Scott J. J., Oh D. C., Yuceer M. C., Klepzig K. D., Clardy J., Currie C. R.. 2008; Bacterial protection of beetle-fungus mutualism. Science322:63 [CrossRef][PubMed]
    [Google Scholar]
  34. Seldin L., Dubnau D.. 1985; Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol35:151–154 [CrossRef]
    [Google Scholar]
  35. Selvakumar G., Panneerselvam P., Ganeshamurthy A. N.. 2015; Diversity Utility and Potential of Actinobacteria in the Agro-Ecosystem. Bacterial Diversity in Sustainable Agriculture , pp.23–40 Edited by Maheshwari D. K.. Switzerland: Springer International publishing;
    [Google Scholar]
  36. Strzelczyk E., Szpotański T.. 1989; Cellulolytic and pectolytic activity of streptomycetes isolated from root-free soil, rhizosphere and mycorrhizosphere of pine (Pinus sylvestris L.). Biol Fertil Soils7:365–369 [CrossRef]
    [Google Scholar]
  37. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2739 [CrossRef][PubMed]
    [Google Scholar]
  38. Tian X. P., Xu Y., Zhang J., Li J., Chen Z., Kim C. J., Li W. J., Zhang C. S., Zhang S.. 2012; Streptomyces oceani sp. nov., a new obligate marine actinomycete isolated from a deep-sea sample of seep authigenic carbonate nodule in South China Sea. Antonie Van Leeuwenhoek102:335–343 [CrossRef][PubMed]
    [Google Scholar]
  39. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I, Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Bacterial Systematics. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464[CrossRef]
    [Google Scholar]
  40. Whittenbury R., Phillips K. C., Wilkinson J. F., Davies S. L.. 1970; Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol61:205–218 [CrossRef][PubMed]
    [Google Scholar]
  41. Williams S. T., Goodfellow M., Alderson G.. 1989; Genus Streptomyces Waksman and Henrici 1943. 339 AL. In Bergey’s Manual of Systematic Bacteriologyvol. 4 pp2452–2492 Edited by Williams S. T., Sharpe M. E., Holt J. G.. Baltimore: Williams & Wilkins;
    [Google Scholar]
  42. Wilson K.. 1997; Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology pp.2.4.1–2.4.2 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. New York: Wiley;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001336
Loading
/content/journal/ijsem/10.1099/ijsem.0.001336
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error