1887

Abstract

A novel bacterium, designated strain CF1, was isolated from a soil sample of a tea plantation and its taxonomic position was determined using a polyphasic approach. Strain CF1 was a Gram-stain-negative, facultatively anaerobic, non-sporulating, non-motile and rod-shaped bacterium. Optimum growth occurred at 25 °C and pH 6.0. Comparative analysis of the 16S rRNA gene sequence showed that the isolate belongs to the genus Paraburkholderia , showing highest levels of similarity with respect to Paraburkholderia sediminicola LMG 24238 (98.44 %). Additionally, strain CF1, P. sediminicola LMG 24238 and Paraburkholderia aspalathi LMG 27731 formed a distinct group in the phylogenetic tree based on 16S rRNA gene sequences. The predominant ubiquinone was Q-8, and the polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified aminophospholipid, two unidentified aminolipids and two unidentified polar lipids. The DNA G+C content was 60.2 mol%, and the major fatty acids were C16 : 0, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c). The DNA–DNA relatedness values between strain CF1 and its close relatives including P. sediminicola LMG 24238 and P. aspalathi LMG 27731 49.3±0.4 % and 38.3±0.5 %, respectively. On the basis of phylogenetic analysis, phenotypic and genotypic data, it is concluded that the isolate represents a novel species of the genus Paraburkholderia , for which the name Paraburkholderia caffeinilytica sp. nov. is proposed. The type strain is CF1 (=LMG 28690=CGMCC 1.15103).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001333
2016-10-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/4185.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001333&mimeType=html&fmt=ahah

References

  1. Collins M. D., Jones D..( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. . J Appl Bacteriol 48: 459–470. [CrossRef]
    [Google Scholar]
  2. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E..( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100: 221–230. [CrossRef] [PubMed]
    [Google Scholar]
  3. Dobritsa A. P., Samadpour M..( 2016;). Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia. . Int J Syst Evol Microbiol 66: 2836–2846. [CrossRef] [PubMed]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E..( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39: 224–229. [CrossRef]
    [Google Scholar]
  5. Felsenstein J..( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  6. Felsenstein J..( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39: 783–791. [CrossRef]
    [Google Scholar]
  7. Fitch W. M..( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20: 406–416. [CrossRef]
    [Google Scholar]
  8. Gu J. Y., Zang S. G., Sheng X. F., He L. Y., Huang Z., Wang Q..( 2015;). Burkholderia susongensis sp. nov., a mineral-weathering bacterium isolated from weathered rock surface. . Int J Syst Evol Microbiol 65: 1031–1037. [CrossRef] [PubMed]
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  10. Lee J. C., Whang K. S..( 2015;). Burkholderia humisilvae sp. nov., Burkholderia solisilvae sp. nov. and Burkholderia rhizosphaerae sp. nov., isolated from forest soil and rhizosphere soil. . Int J Syst Evol Microbiol 65: 2986–2992. [CrossRef] [PubMed]
    [Google Scholar]
  11. Leifson E..( 1960;). Atlas of Bacterial Flagellation. London:: Academic Press;.[CrossRef]
    [Google Scholar]
  12. Lim J. H., Baek S.-H., Lee S.-T..( 2008;). Burkholderia sediminicola sp. nov., isolated from freshwater sediment. . Int J Syst Evol Microbiol 58: 565–569. [CrossRef] [PubMed]
    [Google Scholar]
  13. Marmur J..( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3: 208–218. [CrossRef]
    [Google Scholar]
  14. Mavengere N. R., Ellis A. G., Le Roux J. J..( 2014;). Burkholderia aspalathi sp. nov., isolated from root nodules of the South African legume Aspalathus abietina Thunb. . Int J Syst Evol Microbiol 64: 1906–1912. [CrossRef] [PubMed]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B..( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39: 159–167. [CrossRef]
    [Google Scholar]
  16. Minnikin D. E., Collins M. D., Goodfellow M..( 1979;). Fatty acid and polar lipid composition in the classification of cellulomonas, oerskovia and related taxa. . J Appl Bacteriol 47: 87–95. [CrossRef]
    [Google Scholar]
  17. Oren A., Garrity G. M..( 2015a;). List of new names and new combinations previously effectively, but not validly, published. . Int J Syst Evol Microbiol 65: 2017–2025. [CrossRef]
    [Google Scholar]
  18. Oren A., Garrity G. M..( 2015b;). List of new names and new combinations previously effectively, but not validly, published. . Int J Syst Evol Microbiol 65: 2777–2783. [CrossRef]
    [Google Scholar]
  19. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  20. Sambrook J., Fritsch E. F., Maniatis T..( 1989;). Molecular Cloning: A Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  21. Sasser M..( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. . USFCC Newsl 20: 16.
    [Google Scholar]
  22. Sawana A., Adeolu M., Gupta R. S..( 2014;). Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. . Front Genet 5: 429. [CrossRef] [PubMed]
    [Google Scholar]
  23. Smibert R. M., Krieg N. R..( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology , pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  24. Stackebrandt E., Goebel B. M..( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44: 846–849. [CrossRef]
    [Google Scholar]
  25. Tamaoka J., Komagata K..( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25: 125–128. [CrossRef]
    [Google Scholar]
  26. Tamaoka J., Katayama-Fujimura Y., Kuraishi H..( 1983;). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. . J Appl Bacteriol 54: 31–36. [CrossRef]
    [Google Scholar]
  27. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S..( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28: 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G..( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25: 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I, Moore L. H., Moore W. E. C., Murray R. G. E. et al.( 1987;). International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37: 463–464.[CrossRef]
    [Google Scholar]
  30. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L..( 2005;). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family Oxalobacteraceae isolated from China. . Int J Syst Evol Microbiol 55: 1149–1153. [CrossRef] [PubMed]
    [Google Scholar]
  31. Yu C. L., Louie T. M., Summers R., Kale Y., Gopishetty S., Subramanian M..( 2009;). Two distinct pathways for metabolism of theophylline and caffeine are coexpressed in Pseudomonas putida CBB5. . J Bacteriol 191: 4624–4632. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001333
Loading
/content/journal/ijsem/10.1099/ijsem.0.001333
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error