1887

Abstract

Four spp. isolates from the historical culture collection at the Centers for Disease Control and Prevention, obtained from human blood specimens (=3) and river water (=1), show characteristics distinct from those of isolates of the most closely related species, and , based on phenotypic and genotypic tests. They are specifically adapted to survival in both freshwater and seawater, being able to grow in rich media without added salts as well as salinities above that of seawater. Phenotypically, these isolates resemble , their closest known relative with a validly published name, but the group of isolates is distinguished from by the ability to utilize -rhamnose. Average nucleotide identity and percent DNA–DNA hybridization values obtained from the pairwise comparisons of whole-genome sequences of these isolates to range from 95.4–95.8 % and 61.9–64.3 %, respectively, suggesting that the group represents a different species. Phylogenetic analysis of the core genome, including four protein-coding housekeeping genes (, , and ), places these four isolates into their own monophyletic clade, distinct from and . Based on these differences, we propose these isolates represent a novel species of the genus , for which the name sp. nov. is proposed; strain LMG 29267 (=CIP 111013=2756-81), isolated from river water, is the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001327
2016-10-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/4148.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001327&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  2. Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., Formsma K., Gerdes S., Glass E. M. et al. 2008; The RAST server: rapid annotations using subsystems technology. BMC Genomics9:75 [CrossRef][PubMed]
    [Google Scholar]
  3. Boucher Y., Orata F. D., Alam M.. 2015; The out-of-the-delta hypothesis: dense human populations in low-lying river deltas served as agents for the evolution of a deadly pathogen. Front Microbiol6:1120 [CrossRef][PubMed]
    [Google Scholar]
  4. Brenner D. J., Farmer J. J. III. 2005; Family I. Enterobacteriaceae. In Bergey’s Manual of Systematic Bacteriology–Volume Two: The Proteobacteria, Part B: The Gammaproteobacteria pp587–850 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M., Boone D. R., De Vos P., Rainey F. A., Goodfellow M., Schleifer K. H.. New York, NY: Springer;
    [Google Scholar]
  5. Brown M. R.. 1991; The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J Exp Mar Biol Ecol145:79–99 [CrossRef]
    [Google Scholar]
  6. Claus D.. 1992; A standardized Gram staining procedure. World J Microbiol Biotechnol8:451–452 [CrossRef][PubMed]
    [Google Scholar]
  7. Farmer J. J III, Janda M., Brenner F. W., Cameron D. N., Birkhead K. M.. 2005; Genus I. Vibrio. In Bergey’s Manual of Systematic Bacteriology–Volume Two: The Proteobacteria, Part B: The Gammaproteobacteria , pp.494–546 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M., Boone D. R., De Vos P., Goodfellow M., Rainey F. A., Schleifer K. H.. New York, NY: Springer;
    [Google Scholar]
  8. Gladney L. M., Tarr C. L.. 2014; Molecular and phenotypic characterization of Vibrio navarrensis isolates associated with human illness. J Clin Microbiol52:4070–4074 [CrossRef][PubMed]
    [Google Scholar]
  9. Gladney L. M., Katz L. S., Knipe K. M., Rowe L. A., Conley A. B., Rishishwar L., Mariño-Ramírez L., Jordan I. K., Tarr C. L.. 2014; Genome sequences of Vibrio navarrensis, a potential human pathogen. Genome Announc2:e0118814 [CrossRef][PubMed]
    [Google Scholar]
  10. Gomez-Gil B., Thompson C. C., Matsumura Y., Sawabe T., Iida T., Christen R., Thompson F., Sawabe T.. 2014; The family Vibrionaceae. In The Prokaryotes–Gammaproteobacteria , pp.659–747Edited by Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., Thompson F.. Berlin, Germany: Springer;
    [Google Scholar]
  11. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. 2007; DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  12. Hyatt D., Chen G. L., Locascio P. F., Land M. L., Larimer F. W., Hauser L. J.. 2010; Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics11:119 [CrossRef][PubMed]
    [Google Scholar]
  13. Jones M. K., Oliver J. D.. 2009; Vibrio vulnificus: disease and pathogenesis. Infect Immun77:1723–1733 [CrossRef][PubMed]
    [Google Scholar]
  14. Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S. et al. 2012; Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics28:1647–1649 [CrossRef][PubMed]
    [Google Scholar]
  15. Kislyuk A. O., Katz L. S., Agrawal S., Hagen M. S., Conley A. B., Jayaraman P., Nelakuditi V., Humphrey J. C., Sammons S. A. et al. 2010; A computational genomics pipeline for prokaryotic sequencing projects. Bioinformatics26:1819–1826 [CrossRef][PubMed]
    [Google Scholar]
  16. Konstantinidis K. T., Tiedje J. M.. 2005; Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A102:2567–2572 [CrossRef][PubMed]
    [Google Scholar]
  17. Kumar S., Stecher G., Tamura K.. 2016; mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  18. Kurtz S., Phillippy A., Delcher A. L., Smoot M., Shumway M., Antonescu C., Salzberg S. L.. 2004; Versatile and open software for comparing large genomes. Genome Biol5:R12 [CrossRef][PubMed]
    [Google Scholar]
  19. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. 2007; clustal w and clustal x version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  20. Li L., Stoeckert C. J., Roos D. S.. 2003; OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res13:2178–2189 [CrossRef][PubMed]
    [Google Scholar]
  21. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M.. 2013; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14:60 [CrossRef][PubMed]
    [Google Scholar]
  22. Orata F. D., Kirchberger P. C., Méheust R., Barlow E. J., Tarr C. L., Boucher Y.. 2015; The dynamics of genetic interactions between Vibrio metoecus and Vibrio cholerae, two close relatives co-occurring in the environment. Genome Biol Evol7:2941–2954 [CrossRef][PubMed]
    [Google Scholar]
  23. Richter M., Rosselló-Móra R.. 2009; Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  24. Rost B.. 1999; Twilight zone of protein sequence alignments. Protein Eng12:85–94 [CrossRef][PubMed]
    [Google Scholar]
  25. Ryu K. S., Kim C., Kim I., Yoo S., Choi B. S., Park C.. 2004; NMR application probes a novel and ubiquitous family of enzymes that alter monosaccharide configuration. J Biol Chem279:25544–25548 [CrossRef][PubMed]
    [Google Scholar]
  26. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  27. Sawada H., Takagi Y.. 1964; The metabolism of l-rhamnose in Escherichia coli: III. l-rhamnulose-phosphate aldolase. Biochim Biophys Acta92:26–32
    [Google Scholar]
  28. Stamatakis A.. 2014; RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  29. Tarr C. L., Patel J. S., Puhr N. D., Sowers E. G., Bopp C. A., Strockbine N. A.. 2007; Identification of Vibrio isolates by a multiplex PCR assay and rpoB sequence determination. J Clin Microbiol45:134–140 [CrossRef][PubMed]
    [Google Scholar]
  30. Tarr C. L., Bopp C. A., Farmer J. J. III. 2015; Vibrio and related organisms. In Manual of Clinical Microbiology , pp.762–772 Edited by Jorgensen J. H., Pfaller M. A., Carroll K. C., Funke G., Landry M. L., Richter S. S., Warnock D. W.. Washington, DC: ASM Press;
    [Google Scholar]
  31. Tatusov R. L., Galperin M. Y., Natale D. A., Koonin E. V.. 2000; The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res28:33–36 [CrossRef][PubMed]
    [Google Scholar]
  32. Thompson F. L., Gevers D., Thompson C. C., Dawyndt P., Naser S., Hoste B., Munn C. B., Swings J.. 2005; Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol71:5107–5115 [CrossRef][PubMed]
    [Google Scholar]
  33. Thyssen A., Ollevier F.. 2005; Genus II. Photobacterium. In Bergey’s Manual of Systematic Bacteriology–Volume Two: The Proteobacteria, Part B: The Gammaproteobacteria , pp.546–552Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M., Boone D. R., De Vos P., Goodfellow M., Rainey F. A., Schleifer K. H.. New York, NY: Springer;
    [Google Scholar]
  34. Urbanczyk H., Ast J. C., Higgins M. J., Carson J., Dunlap P. V.. 2007; Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int J Syst Evol Microbiol57:2823–2829 [CrossRef][PubMed]
    [Google Scholar]
  35. Urdaci M. C., Marchand M., Ageron E., Arcos J. M., Sesma B., Grimont P. A.. 1991; Vibrio navarrensis sp. nov., a species from sewage. Int J Syst Bacteriol41:290–294 [CrossRef][PubMed]
    [Google Scholar]
  36. Ventosa A.. 2005; Genus III. Salinivibrio. In Bergey’s Manual of Systematic Bacteriology–Volume Two: The Proteobacteria, Part B: The Gammaproteobacteria , pp.552–555Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M., Boone D. R., De Vos P., Goodfellow M., Rainey F. A., Schleifer K. H.. New York, NY: Springer;
    [Google Scholar]
  37. Vernikos G., Medini D., Riley D. R., Tettelin H.. 2015; Ten years of pan-genome analyses. Curr Opin Microbiol23:148–154 [CrossRef][PubMed]
    [Google Scholar]
  38. Wilson D. M., Ajl S.. 1957; Metabolism of L-rhamnose by Escherichia coli. I. L-rhamnose isomerase. J Bacteriol73:410–414[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001327
Loading
/content/journal/ijsem/10.1099/ijsem.0.001327
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error