1887

Abstract

Phylogenetic studies were performed on a group of novel Gram-stain-positive, anaerobic, non-sporulating rod-shaped bacteria isolated from a thermophilic biogas plant. The novel organisms were able to degrade crystalline cellulose. 16S rRNA gene sequence comparison indicated that the isolates SD1D, SD1G, SD1I and RK1P share 100 % sequence identity, and are most closely related to T3/55 with which they share a 16S rRNA gene sequence similarity of 96.4 %. As a representative of the whole group of isolates, strain SD1D was further characterized. Strain SD1D was catalase-negative, indole-negative, and produced acetate, ethanol, butyric acid and hydrogen as major end-products during fermentative cellobiose utilization. Cells are rod-shaped, growing optimally at 40–65 °C and pH 6.5–8.5. The major cellular fatty acids (>10 %) were C 9,10 dimethyl acetal, C and C. The DNA G+C content was 35.1 mol%. Due to the genetic and phenotypic differences to the most closely affiliated species, the isolates represent a novel species of the genus within the family , for which the name sp. nov. is proposed. The type strain is SD1D(=DSM 100831=CECT 8959).

Keyword(s): Biogas plant and Cellulolytic
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001324
2016-10-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/4132.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001324&mimeType=html&fmt=ahah

References

  1. Biddle A., Stewart L., Blanchard J., Leschine S.. 2013; Untangling the genetic basis of fibrolytic specialization by L achnospiraceae and R uminococcaceae in diverse gut communities. Diversity5:627–640 [CrossRef]
    [Google Scholar]
  2. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A.. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol44:812–826 [CrossRef][PubMed]
    [Google Scholar]
  3. DeLong E. F.. 2009; The microbial ocean from genomes to biomes. Nature459:200–206 [CrossRef][PubMed]
    [Google Scholar]
  4. Euzéby J.. 2010; List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol60:1009–1010 [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  6. Gosalbes M. J., Durbán A., Pignatelli M., Abellan J. J., Jiménez-Hernández N., Pérez-Cobas A. E., Latorre A., Moya A.. 2011; Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One6:e17447 [CrossRef][PubMed]
    [Google Scholar]
  7. Hardman J. K., Stadtman T. C.. 1960; Metabolism of ω-amino acids. II. Fermentation of Δ-aminovaleric acid by Clostridium aminovalericum sp. nov. J Bacteriol79:549–552
    [Google Scholar]
  8. Jeong H., Yi H., Sekiguchi Y., Muramatsu M., Kamagata Y., Chun J.. 2004; Clostridium jejuense sp. nov., isolated from soil. Int J Syst Evol Microbiol54:1465–1468 [CrossRef][PubMed]
    [Google Scholar]
  9. Jeong H., Lim Y. W., Yi H., Sekiguchi Y., Kamagata Y., Chun J.. 2007; Anaerosporobacter mobilis gen. nov., sp. nov., isolated from forest soil. Int J Syst Evol Microbiol57:1784–1787 [CrossRef][PubMed]
    [Google Scholar]
  10. Johnson E. A., Madia A., Demain A. L.. 1981; Chemically defined minimal medium for growth of the anaerobic cellulolytic thermophile Clostridium thermocellum. Appl Environ Microbiol41:1060–1062[PubMed]
    [Google Scholar]
  11. Johnson M. J., Thatcher E., Cox M. E.. 1995; Techniques for controlling variability in Gram staining of obligate anaerobes. J Clin Microbiol33:755–758[PubMed]
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  13. Kittelmann S., Seedorf H., Walters W. A., Clemente J. C., Knight R., Gordon J. I., Janssen P. H.. 2013; Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS One8:e47879 [CrossRef][PubMed]
    [Google Scholar]
  14. Koeck D. E., Wibberg D., Maus I., Winkler A., Albersmeier A., Zverlov V. V., Liebl W., Pühler A., Schwarz W. H., Schlüter A.. 2014a; Complete genome sequence of the cellulolytic thermophile Ruminoclostridium cellulosi wild-type strain DG5 isolated from a thermophilic biogas plant. J Biotechnol188:136–137 [CrossRef][PubMed]
    [Google Scholar]
  15. Koeck D. E., Zverlov V. V., Liebl W., Schwarz W. H.. 2014b; Comparative genotyping of Clostridium thermocellum strains isolated from biogas plants: genetic markers and characterization of cellulolytic potential. Syst Appl Microbiol37:311–319 [CrossRef][PubMed]
    [Google Scholar]
  16. Koeck D. E., Ludwig W., Wanner G., Zverlov V. V., Liebl W., Schwarz W. H.. 2015; Herbinix hemicellulosilytica gen. nov., sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor. Int J Syst Evol Microbiol65: [CrossRef][PubMed]
    [Google Scholar]
  17. Krause L., Diaz N. N., Edwards R. A., Gartemann K.-H., Krömeke H., Neuweger H., Pühler A., Runte K. J., Schlüter A. et al. 2008; Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor. J Biotechnol136:91–101 [CrossRef][PubMed]
    [Google Scholar]
  18. Kröber M., Bekel T., Diaz N. N., Goesmann A., Jaenicke S., Krause L., Miller D., Runte K. J., Viehöver P. et al. 2009; Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotechnol142:38–49 [CrossRef][PubMed]
    [Google Scholar]
  19. Ludwig W., Schleifer K. -H., Whitman W. B.. 2009; Revised road map to the phylum Firmicutes. In Bergey’s Manual of Systematic Bacteriology, 2nd edn.vol 3 , pp.1–13 Edited by De Vos P., MGarrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A.. New York, NY: Springer;
    [Google Scholar]
  20. Mechichi T., Labat M., Garcia J. L., Thomas P., Patel B. K.. 1999; Characterization of a new xylanolytic bacterium, Clostridium xylanovorans sp. nov. Syst Appl Microbiol22:366–371 [CrossRef][PubMed]
    [Google Scholar]
  21. Meehan C. J., Beiko R. G.. 2014; A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol6:703–713 [CrossRef][PubMed]
    [Google Scholar]
  22. Meyer F., Goesmann A., McHardy A. C., Bartels D., Bekel T., Clausen J., Kalinowski J., Linke B., Rupp O. et al. 2003; GenDB-an open source genome annotation system for prokaryote genomes. Nucleic Acids Res31:2187–2195 [CrossRef][PubMed]
    [Google Scholar]
  23. Miller G. L.. 1959; Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem31:426–428 [CrossRef]
    [Google Scholar]
  24. Munoz R., Yarza P., Ludwig W., Euzéby J., Amann R., Schleifer K. H., Glöckner F. O., Rosselló-Móra R.. 2011; Release LTPs104 of the all-species living tree. Syst Appl Microbiol34:169–170 [CrossRef][PubMed]
    [Google Scholar]
  25. Parte A. C.. 2014; LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  26. Podosokorskaya O. A., Bonch-Osmolovskaya E. A., Beskorovaynyy A. V., Toshchakov S. V., Kolganova T. V., Kublanov I. V.. 2014; Mobilitalea sibirica gen. nov., sp. nov., a halotolerant polysaccharide-degrading bacterium. Int J Syst Evol Microbiol64:2657–2661 [CrossRef][PubMed]
    [Google Scholar]
  27. Rainey F. A.. 2009; Family V. Lachnospiraceae. In Bergey’s Manual of Systematic Bacteriology, 2nd edn.vol 3 p921 Edited by De Vos G. M., Garrity D., Jones N. R., Krieg W., Ludwig F. A., Rainey K. H., Whitman W. B.. New York, NY: Springer;
    [Google Scholar]
  28. Schlüter A., Bekel T., Diaz N. N., Dondrup M., Eichenlaub R., Gartemann K. H., Krahn I., Krause L., Krömeke H. et al. 2008; The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. J Biotechnol136:77–90 [CrossRef][PubMed]
    [Google Scholar]
  29. Sievers F., Wilm A., Dineen D., Gibson T. J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M. et al. 2011; Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol7: [CrossRef][PubMed]
    [Google Scholar]
  30. Sleat R., Mah R. A.. 1985; Clostridium populeti sp. nov., a cellulolytic species from a woody-biomass digestor. Inter J Syst Bacteriol35:160–163 [CrossRef]
    [Google Scholar]
  31. Stamatakis A.. 2006; RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics22:2688–2690 [CrossRef][PubMed]
    [Google Scholar]
  32. Stolze Y., Zakrzewski M., Maus I., Eikmeyer F., Jaenicke S., Rottmann N., Siebner C., Pühler A., Schlüter A.. 2015; Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnol Biofuels8:14 [CrossRef][PubMed]
    [Google Scholar]
  33. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  34. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P.. 2010; Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol60:249–266 [CrossRef][PubMed]
    [Google Scholar]
  35. van Gylswyk N. O.. 1980; Fusobacterium polysaccharolyticum sp.nov., a Gram-negative rod from the rumen that produces butyrate and ferments cellulose and starch. J Gen Microbiol116:157–163 [CrossRef][PubMed]
    [Google Scholar]
  36. Van Gylswyk N. O., Van der Toorn J. J. T. K.. 1985; Eubacterium uniforme sp. nov. and Eubacterium xylanophilum sp. nov., fiber-digesting bacteria from the rumina of sheep fed corn stover. Inter J Syst Bacteriol35:323–326 [CrossRef]
    [Google Scholar]
  37. Varel V. H., Tanner R. S., Woese C. R.. 1995; Clostridium herbivorans sp. nov., a cellulolytic anaerobe from the pig intestine. Int J Syst Bacteriol45:490–494 [CrossRef][PubMed]
    [Google Scholar]
  38. Warnick T. A., Methé B. A., Leschine S. B.. 2002; Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol52:1155–1160[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001324
Loading
/content/journal/ijsem/10.1099/ijsem.0.001324
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error