1887

Abstract

Root nodule bacteria were isolated from nodules on Mimosa pudica L. growing in neutral–alkaline soils from the Distrito Federal in central Brazil. The 16S rRNA gene sequence analysis of 10 strains placed them into the genus Rhizobium with the closest neighbouring species (each with 99 % similarity) being R hizobium grahamii , R hizobium cauense , Rhizobium mesoamericanum and R hizobium tibeticum . This high similarity, however, was not confirmed by multi-locus sequence analysis (MLSA) using three housekeeping genes (recA, glnII and rpoB), which revealed R. mesoamericanum CCGE 501 to be the closest type strain (92 % sequence similarity or less). Chemotaxonomic data, including fatty acid profiles [with majority being C19 : 0 cyclo ω8c and summed feature 8 (C18 : 1ω7c/C18 : 1ω6c)], DNA G+C content (57.6 mol%), and carbon compound utilization patterns supported the placement of the novel strains in the genus Rhizobium . Results of average nucleotide identity (ANI) differentiated the novel strains from the closest species of the genus Rhizobium , R. mesoamericanum , R. grahamii and R. tibeticum with 89.0, 88.1 and 87.8 % similarity, respectively. The symbiotic genes essential for nodulation (nodC) and nitrogen fixation (nifH) were most similar (99–100 %) to those of R. mesoamericanum , another Mimosa-nodulating species. Based on the current data, these 10 strains represent a novel species of the genus Rhizobium for which the name Rhizobium altiplani sp. nov. is proposed. The type strain is BR 10423 (=HAMBI 3664).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001322
2016-10-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/4118.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001322&mimeType=html&fmt=ahah

References

  1. Barneby R. C..( 1991;). Sensitivae censitae: a description of the genus Mimosa Linnaeus (Mimosaceae) in the new world. . Mem N Y Bot Gard 65: 1–835.
    [Google Scholar]
  2. Barrett C. F., Parker M. A..( 2005;). Prevalence of Burkholderia sp. nodule symbionts on four mimosoid legumes from Barro Colorado Island, Panama. . Syst Appl Microbiol 28: 57–65. [CrossRef] [PubMed]
    [Google Scholar]
  3. Barrett C. F., Parker M. A..( 2006;). Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule bacteria on two Mimosa spp. in Costa Rica. . Appl Environ Microbiol 72: 1198–1206. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bontemps C., Elliott G. N., Simon M. F., dos Reis Junior F. B., Gross E., Lawton R. C., Neto N. E., de Fátima Loureiro M., De Faria S. M. et al.( 2010;). Burkholderia species are ancient symbionts of legumes. . Mol Ecol 19: 44–52. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bontemps C., Rogel M. A., Wiechmann A., Mussabekova A., Moody S., Simon M. F., Moulin L., Elliott G. N., Lacercat-Didier L. et al.( 2016;). Endemic Mimosa species from Mexico prefer alphaproteobacterial rhizobial symbionts. . New Phytol 209: 319–333. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chen W. M., Laevens S., Lee T. M., Coenye T., De Vos P., Mergeay M., Vandamme P..( 2001;). Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. . Int J Syst Evol Microbiol 51: 1729–1735. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chen W. M., Moulin L., Bontemps C., Vandamme P., Béna G., Boivin-Masson C..( 2003;). Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature. . J Bacteriol 185: 7266–7272. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chen W. M., de Faria S. M., Straliotto R., Pitard R. M., Simões-Araùjo J. L., Chou J. H., Chou Y. J., Barrios E., Prescott A. R. et al.( 2005a;). Proof that Burkholderia strains form effective symbioses with legumes: a study of novel Mimosa-nodulating strains from South America. . Appl Environ Microbiol 71: 7461–7471. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chen W. M., James E. K., Chou J. H., Sheu S. Y., Yang S. Z., Sprent J. I..( 2005b;). Beta-rhizobia from Mimosa pigra, a newly discovered invasive plant in Taiwan. . New Phytol 168: 661–675. [CrossRef] [PubMed]
    [Google Scholar]
  10. de Carvalho Mendes I., Fernandes M. F., Chaer G. M., Bueno dos Reis Junior F..( 2012;). Biological functioning of Brazilian Cerrado soils under different vegetation types. . Plant Soil 359: 183–195. [CrossRef]
    [Google Scholar]
  11. Delamuta J. R., Ribeiro R. A., Ormeño-Orrillo E., Melo I. S., Martínez-Romero E., Hungria M..( 2013;). Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. . Int J Syst Evol Microbiol 63: 3342–3351. [CrossRef] [PubMed]
    [Google Scholar]
  12. dos Reis Junior F. B., Simon M. F., Gross E., Boddey R. M., Elliott G. N., Neto N. E., Loureiro M. F., de Queiroz L. P., Scotti M. R. et al.( 2010;). Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil. . New Phytol 186: 934–946. [CrossRef] [PubMed]
    [Google Scholar]
  13. Elliott G. N., Chou J. H., Chen W. M., Bloemberg G. V., Bontemps C., Martínez-Romero E., Velázquez E., Young J. P., Sprent J. I., James E. K..( 2009;). Burkholderia spp. are the most competitive symbionts of Mimosa, particularly under N-limited conditions. . Environ Microbiol 11: 762–778. [CrossRef] [PubMed]
    [Google Scholar]
  14. Felsenstein J..( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  15. Fred E. B., Waksman S. A..( 1928;). Yeast Extract-Manitol Agar. Laboratory Manual of General Microbiology. New York:: McGraw Hill;.
    [Google Scholar]
  16. Gehlot H. S., Tak N., Kaushik M., Mitra S., Chen W. M., Poweleit N., Panwar D., Poonar N., Parihar R. et al.( 2013;). An invasive Mimosa in India does not adopt the symbionts of its native relatives. . Ann Bot 112: 179–196. [CrossRef] [PubMed]
    [Google Scholar]
  17. Gouy M., Guindon S., Gascuel O..( 2010;). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. . Mol Biol Evol 27: 221–224. [CrossRef] [PubMed]
    [Google Scholar]
  18. Gyaneshwar P., Hirsch A. M., Moulin L., Chen W. M., Elliott G. N., Bontemps C., Estrada-de Los Santos P., Gross E., Dos Reis F. B. et al.( 2011;). Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. . Mol Plant Microbe Interact 24: 1276–1288. [CrossRef] [PubMed]
    [Google Scholar]
  19. Klonowska A., Chaintreuil C., Tisseyre P., Miché L., Melkonian R., Ducousso M., Laguerre G., Brunel B., Moulin L..( 2012;). Biodiversity of Mimosa pudica rhizobial symbionts (Cupriavidus taiwanensis, Rhizobium mesoamericanum) in New Caledonia and their adaptation to heavy metal-rich soils. . FEMS Microbiol Ecol 81: 618–635. [CrossRef] [PubMed]
    [Google Scholar]
  20. Liu X., Wei S., Wang F., James E. K., Guo X., Zagar C., Xia L. G., Dong X., Wang Y. P..( 2012;). Burkholderia and Cupriavidus spp. are the preferred symbionts of Mimosa spp. in southern China. . FEMS Microbiol Ecol 80: 417–426. [CrossRef] [PubMed]
    [Google Scholar]
  21. López-López A., Rogel-Hernández M. A., Barois I., Ortiz Ceballos A. I., Martínez J., Ormeño-Orrillo E., Martínez-Romero E..( 2012;). Rhizobium grahamii sp. nov., from nodules of Dalea leporina, Leucaena leucocephala and Clitoria ternatea, and Rhizobium mesoamericanum sp. nov., from nodules of Phaseolus vulgaris, siratro, cowpea and Mimosa pudica. . Int J Syst Evol Microbiol 62: 2264–2271. [CrossRef] [PubMed]
    [Google Scholar]
  22. Martens M, Dawyndt P., Coopman R., Gillis M., De Vos P., Willems A..( 2008;). Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer. . Int J Syst Evol Microbiol 58: 200–214. [CrossRef] [PubMed]
    [Google Scholar]
  23. Melkonian R., Moulin L., Béna G., Tisseyre P., Chaintreuil C., Heulin K., Rezkallah N., Klonowska A., Gonzalez S. et al.( 2014;). The geographical patterns of symbiont diversity in the invasive legume Mimosa pudica can be explained by the competitiveness of its symbionts and by the host genotype. . Environ Microbiol 16: 2099–2111. [CrossRef] [PubMed]
    [Google Scholar]
  24. Mishra R. P., Tisseyre P., Melkonian R., Chaintreuil C., Miché L., Klonowska A., Gonzalez S., Bena G., Laguerre G., Moulin L..( 2012;). Genetic diversity of Mimosa pudica rhizobial symbionts in soils of French Guiana: investigating the origin and diversity of Burkholderia phymatum and other beta-rhizobia. . FEMS Microbiol Ecol 79: 487–503. [CrossRef] [PubMed]
    [Google Scholar]
  25. Parker M. A..( 2015;). A single sym plasmid type predominates across diverse chromosomal lineages of Cupriavidus nodule symbionts. . Syst Appl Microbiol 38: 417–423. [CrossRef] [PubMed]
    [Google Scholar]
  26. Platero R., James E. K., Rios C., Iriarte A., Sandes L., Zabaleta M., Battistoni F., Fabiano E..( 2016;). Novel cupriavidus strains Isolated from root nodules of native uruguayan mimosa species. . Appl Environ Microbiol 82: 3150–3164. [CrossRef] [PubMed]
    [Google Scholar]
  27. Radl V., Simões-Araújo J. L., Leite J., Passos S. R., Martins L. M. V., Xavier G. R., Rumjanek N. G., Baldani J. I., Zilli J. E..( 2013;). Microvirga vignae sp. nov., a root nodule symbiotic bacterium isolated from cowpea grown in the semi-arid of Brazil. . Int J Syst Evol Microbiol 63: 725–730.
    [Google Scholar]
  28. Ramos H. J., Roncato-Maccari L. D., Souza E. M., Soares-Ramos J. R., Hungria M., Pedrosa F. O..( 2002;). Monitoring Azospirillum-wheat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector. . J Biotechnol 97: 243–252. [CrossRef] [PubMed]
    [Google Scholar]
  29. Richter M., Rosselló-Móra R..( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106: 19126–19131. [CrossRef] [PubMed]
    [Google Scholar]
  30. Sarita S., Sharma P. K., Priefer U. B., Prell J..( 2005;). Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. . FEMS Microbiol Ecol 54: 1–11. [CrossRef] [PubMed]
    [Google Scholar]
  31. Simon M. F., Grether R., de Queiroz L. P., Särkinen T. E., Dutra V. F., Hughes C. E..( 2011;). The evolutionary history of Mimosa (Leguminosae): toward a phylogeny of the sensitive plants. . Am J Bot 98: 1201–1221. [CrossRef] [PubMed]
    [Google Scholar]
  32. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 28: 2731–2739.[CrossRef]
    [Google Scholar]
  33. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D..( 2000;). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. . Int J Syst Evol Microbiol 50: 787–801. [CrossRef] [PubMed]
    [Google Scholar]
  34. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P..( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60: 249–266. [CrossRef] [PubMed]
    [Google Scholar]
  35. Vincent J. M..( 1970;). A Manual for the Practical Study of Root-Nodule Bacteria. Oxford:: International Biological Programme [by] Blackwell Scientific;.
    [Google Scholar]
  36. Wang E. T., Rogel M. A., García-de los Santos A., Martínez-Romero J., Cevallos M. A., Martínez-Romero E..( 1999;). Rhizobium etli bv. mimosae, a novel biovar isolated from Mimosa affinis. . Int J Syst Bacteriol 49: 1479–1491. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001322
Loading
/content/journal/ijsem/10.1099/ijsem.0.001322
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error