sp. nov. isolated from mountain soil Free

Abstract

A Gram-staining-negative, strictly aerobic, non-spore-forming, rod-shaped bacterium, designated WG4, was isolated from soil of the Tianmen Mountain located in Hunan province, PR China. 16S rRNA gene sequence analysis showed that the strain belongs to the genus in the family , with 97.4 % and 97.1 % sequence identities to NF 1366 and H38, respectively. In comparison with the other strains representing the genus , the 16S rRNA gene sequence identities were less than 97.0 %. The DNA–DNA relatedness values were 63.3 % (±1) between NF 1366 and strain WG4 and 62.7 % (±2) between DSM 19056 and strain WG4. The DNA G+C content of strain WG4 was 37.7 mol%. The predominant fatty acids of strain WG4 were iso-C, anteiso-C and iso-C 3-OH. The major polar lipids were phosphatidylethanolamine, three unidentified lipids and two unidentified aminolipids. The major menaquinone of strain WG4 was menaquinone 6. Strain WG4 showed some unique physiological and biochemical characteristics, such as being negative for gelatin hydrolysis, and valine arylamidase and α-glucosidase activity, and positive for acid production from cellobiose. Based on the differentiating phylogenetic inference and biochemical data, strain WG4 represents a novel species, for which the name sp. nov. is proposed, with the type strain WG4 (=KCTC 52204=CCTCC AB 2016058).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001309
2016-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/4051.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001309&mimeType=html&fmt=ahah

References

  1. Ben-Ze’ev I. S., Levy E., Eilam T., Anikster Y. 2005; Whole-cell fatty acid profiles – a tool for species and subspecies classification in the Puccinia recondita complex. J Plant Pathol 87:187–197
    [Google Scholar]
  2. Bernardet J. F., Nakagawa Y., Holmes B. 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  3. Bernardet J. F., Hugo C., Bruun B. 2011; Genus X. Chryseobacterium Vandamme et al. 1994a. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 4 pp. 180–196 Edited by Krieg N. R., Ludwig W., Whitman W. B., Hedlund B. P., Paster B. J., Staley J. T., Ward N., Brown D., Parte A. New York: Springer;
    [Google Scholar]
  4. Chen X. Y., Zhao R., Chen Z. L., Liu L., Li X. D., Li Y. H. 2015; Chryseobacterium polytrichastri sp. nov., isolated from a moss (Polytrichastrum formosum), and emended description of the genus Chryseobacterium . Antonie Van Leeuwenhoek 107:403–410 [View Article][PubMed]
    [Google Scholar]
  5. Collins M. D., Jones D. 1980; Lipids in the classification and identification of coryneform bacteriacontaining peptidoglycans based on 2, 4-diaminobutyricacid. J Appl Bacteriol 48:459–470 [View Article]
    [Google Scholar]
  6. Collins M. D. 1985; Isoprenoid quinone analysis in bacterial classification and identification. In Chemical Methods in Bacterial Systematics pp. 267–287 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  7. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  8. Dong X. Z., Cai M. Y. 2001 Determinative Manual for Routine Bacteriology Beijing: Scientific Press;
    [Google Scholar]
  9. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485[PubMed]
    [Google Scholar]
  10. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid hybridization inmicrodilution wells as an alternative to membrane filterhybridization in which radioisotopes are used to determine geneticrelatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  11. Fan H., Su C., Wang Y., Yao J., Zhao K., Wang Y., Wang G. 2008; Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. J Appl Microbiol 105:529–539 [View Article][PubMed]
    [Google Scholar]
  12. Fautz E., Reichenbach H. 1980; A simple test for flexirubin-type pigments. FEMS Microbiol Ecol 8:87–91 [View Article]
    [Google Scholar]
  13. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  14. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  15. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  16. Hantsis-Zacharov E., Halpern M. 2007; Chryseobacterium haifense sp. nov., a psychrotolerant bacterium isolated from raw milk. Int J Syst Evol Microbiol 57:2344–2348 [View Article][PubMed]
    [Google Scholar]
  17. Huss V. A., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [View Article][PubMed]
    [Google Scholar]
  18. Kim K. K., Bae H. S., Schumann P., Lee S. T. 2005; Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 55:133–138 [View Article][PubMed]
    [Google Scholar]
  19. Kim M. K., Im W. T., Shin Y. K., Lim J. H., Kim S. H., Lee B. C., Park M. Y., Lee K. Y., Lee S. T. 2004; Kaistella koreensis gen. nov., sp. nov., a novel member of the Chryseobacterium-Bergeyella-Riemerella branch. Int J Syst Evol Microbiol 54:2319–2324 [View Article][PubMed]
    [Google Scholar]
  20. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  21. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  22. Kroppenstedt R. M. 1982; Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and asilver loaded ion exchanger as stationary phases. J Liquid Chromatogr 5:2359–2367 [View Article]
    [Google Scholar]
  23. Kroppenstedt R. M. 1985; Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series No. 20) pp. 173–199 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  24. Kämpfer P., Vaneechoutte M., Lodders N., De Baere T., Avesani V., Janssens M., Busse H. J., Wauters G. 2009; Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium . Int J Syst Evol Microbiol 59:2421–2428 [View Article][PubMed]
    [Google Scholar]
  25. Kämpfer P., Arun A. B., Young C. C., Chen W. M., Sridhar K. R., Rekha P. D. 2010; Chryseobacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems. Int J Syst Evol Microbiol 60:1765–1769 [View Article][PubMed]
    [Google Scholar]
  26. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  27. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fattyacid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95 [View Article]
    [Google Scholar]
  28. Park M. S., Jung S. R., Lee K. H., Lee M. S., Do J. O., Kim S. B., Bae K. S. 2006; Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 56:433–438 [View Article][PubMed]
    [Google Scholar]
  29. Park Y. J., Son H. M., Lee E. H., Kim J. H., Mavlonov G. T., Choi K. J., Shin H. S., Kook M., Yi T. H. 2013; Chryseobacterium gwangjuense sp. nov., isolated from soil. Int J Syst Evol Microbiol 63:4580–4585 [View Article][PubMed]
    [Google Scholar]
  30. Peterson W. J., Bell T. A., Etchells J. L., Smart W. W. G. Jr 1954; A procedure for demonstrating the presence of carotenoid pigments in yeasts. J Bacteriol 67:708–713[PubMed]
    [Google Scholar]
  31. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156 [View Article]
    [Google Scholar]
  32. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  33. Sasser M. 1990 Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  34. Strahan B. L., Failor K. C., Batties A. M., Hayes P. S., Cicconi K. M., Mason C. T., Newman J. D. 2011; Chryseobacterium piperi sp. nov., isolated from a freshwater creek. Int J Syst Evol Microbiol 61:2162–2166 [View Article][PubMed]
    [Google Scholar]
  35. Tai C. J., Kuo H. P., Lee F. L., Chen H. K., Yokota A., Lo C. C. 2006; Chryseobacterium taiwanense sp. nov., isolated from soil in Taiwan. Int J Syst Evol Microbiol 56:1771–1776 [View Article][PubMed]
    [Google Scholar]
  36. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  37. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  38. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  39. Vandamme P., Bernardet J. F., Segers P., Kersters K., Holmes B. 1994; New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44:827–831 [View Article]
    [Google Scholar]
  40. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  41. Weon H. Y., Kim B. Y., Yoo S. H., Kwon S. W., Stackebrandt E., Go S. J. 2008; Chryseobacterium soli sp. nov. and Chryseobacterium jejuense sp. nov., isolated from soil samples from Jeju, Korea. Int J Syst Evol Microbiol 58:470–473 [View Article][PubMed]
    [Google Scholar]
  42. Wu Y. F., Wu Q. L., Liu S. J. 2013; Chryseobacterium taihuense sp. nov., isolated from a eutrophic lake, and emended descriptions of the genus Chryseobacterium, Chryseobacterium taiwanense, Chryseobacterium jejuense and Chryseobacterium indoltheticum . Int J Syst Evol Microbiol 63:913–919 [View Article][PubMed]
    [Google Scholar]
  43. Yoon J. H., Kang S. J., Oh T. K. 2007; Chryseobacterium daeguense sp. nov., isolated from wastewater of a textile dye works. Int J Syst Evol Microbiol 57:1355–1359 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001309
Loading
/content/journal/ijsem/10.1099/ijsem.0.001309
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed