1887

Abstract

A ginsenoside-transforming bacterium, designated Gsoil 1550, was isolated from soil of a ginseng field and subjected to a polyphasic taxonomic analysis. Colonies of strain Gsoil 1550 were yellow, of low convexity and with regular margin. Cells were long rods, 0.5–1.2 µm wide and 1.6–3 µm long. The isolate grew at 10–37 °C and at pH 5–9 on R2A agar medium; maximum growth occurred at 30 °C and pH 6–7. Phylogenetic study based on the 16S rRNA gene sequence positioned Gsoil 1550 in a distinct lineage in the family , sharing 92.5–92.8 % sequence similarity with members of the closely related genera , , and . Strain Gsoil 1550 contained menaquinone MK-7 as the predominant quinone, and iso-C, iso-C 3-OH, C and iso-C G as major fatty acids. The DNA G+C content was 44.6 mol%. Strain Gsoil 1550 could be distinguished from other members of the family by a number of chemotaxonomic and phenotypic characteristics. The major polar lipid of strain Gsoil 1550 was phosphatidylethanolamine. Based on this polyphasic taxonomic analysis, strain Gsoil 1150 represents a novel species within a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is Gsoil 1550 (=KCTC 12658=JCM 31452).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001307
2016-10-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/4039.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001307&mimeType=html&fmt=ahah

References

  1. Albert R. A., Zitomer D., Dollhopf M., Schauer-Gimenez A. E., Struble C., King M., Son S., Langer S., Busse H. J.. 2014; Proposal of Vibrionimonas magnilacihabitans gen. nov., sp. nov., a curved Gram-stain-negative bacterium isolated from lake water. Int J Syst Evol Microbiol64:613–620 [CrossRef][PubMed]
    [Google Scholar]
  2. An D. S., Lee H. G., Im W. T., Liu Q. M., Lee S. T.. 2007; Segetibacter koreensis gen. nov., sp. nov., a novel member of the phylum Bacteroidetes, isolated from the soil of a ginseng field in South Korea. Int J Syst Evol Microbiol57:1828–1833 [CrossRef][PubMed]
    [Google Scholar]
  3. Chung E. J., Park T. S., Jeon C. O., Chung Y. R.. 2012; Chitinophaga oryziterrae sp. nov., isolated from the rhizosphere soil of rice (Oryza sativa L.). Int J Syst Evol Microbiol62:3030–3035 [CrossRef][PubMed]
    [Google Scholar]
  4. Eder W., Peplies J. R., Wanner G., Frühling A., Verbarg S.. 2015; Hydrobacter penzbergensis gen. nov., sp. nov., isolated from purified water. Int J Syst Evol Microbiol65:920–926 [CrossRef][PubMed]
    [Google Scholar]
  5. Fautz E., Reichenbach H.. 1980; A simple test for flexirubin-type pigments. FEMS Microbiol Lett8:87–91 [CrossRef]
    [Google Scholar]
  6. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  7. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific ttee topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  8. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  9. Hiraishi A., Ueda Y., Ishihara J., Mori T.. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol42:457–469[CrossRef]
    [Google Scholar]
  10. Kämpfer P., Young C. C., Sridhar K. R., Arun A. B., Lai W. A., Shen F. T., Rekha P. D. 2006; Transfer of [Flexibacter] sancti, [Flexibacter] filiformis, [Flexibacter] japonensis and [Cytophaga] arvensicola to the genus Chitinophaga and description of Chitinophaga skermanii sp. nov. Int J Syst Evol Microbiol56:2223–2228 [CrossRef][PubMed]
    [Google Scholar]
  11. Kämpfer P., Lodders N., Falsen E.. 2011; Hydrotalea flava gen. nov., sp. nov., a new member of the phylum Bacteroidetes and allocation of the genera Chitinophaga, Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Parasegetibacter, Terrimonas, Ferruginibacter, Filimonas and Hydrotalea to the family Chitinophagaceae fam. nov. Int J Syst Evol Microbiol61:518–523 [CrossRef][PubMed]
    [Google Scholar]
  12. Kang J. Y., Chun J., Seo J. W., Kim C. H., Jahng K. Y.. 2015; Flaviaesturariibacter amylovorans gen. nov., sp. nov., a starch-hydrolysing bacterium, isolated from estuarine water. Int J Syst Evol Microbiol65:2209–2214 [CrossRef][PubMed]
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  14. Kim S. J., Park J. H., Lim J. M., Ahn J. H., Anandham R., Weon H. Y., Kwon S. W.. 2014; Parafilimonas terrae gen. nov., sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol64:3040–3045 [CrossRef][PubMed]
    [Google Scholar]
  15. Kim J. K., Kang M. S., Park S. C., Kim K. M., Choi K., Yoon M. H., Im W. T.. 2015; Sphingosinicella ginsenosidimutans sp. nov., with ginsenoside converting activity. J Microbiol53:435–441 [CrossRef][PubMed]
    [Google Scholar]
  16. Kimura M.. 1983; The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;[CrossRef]
    [Google Scholar]
  17. Leandro T., França L., Nobre M. F., Rainey F. A., da Costa M. S.. 2013; Heliimonas saccharivorans gen. nov., sp. nov., a member of the family Chitinophagaceae isolated from a mineral water aquifer, and emended description of Filimonas lacunae. Int J Syst Evol Microbiol63:3793–3799 [CrossRef][PubMed]
    [Google Scholar]
  18. Lee D. G., Park J. M., Kang H., Hong S. Y., Lee K. R., Chang H. B., Trujillo M. E.. 2013; Asinibacterium lactis gen. nov., sp. nov., a member of the family Chitinophagaceae, isolated from donkey (Equus asinus) milk. Int J Syst Evol Microbiol63:3180–3185 [CrossRef][PubMed]
    [Google Scholar]
  19. Lv Y. Y., Wang J., Chen M. H., You J., Qiu L. H.. 2016; Dinghuibacter silviterrae gen. nov., sp. nov., isolated from forest soil. Int J Syst Evol Microbiol66:1785–1791 [CrossRef][PubMed]
    [Google Scholar]
  20. Madhaiyan M., Poonguzhali S., Senthilkumar M., Pragatheswari D., Lee J. S., Lee K. C.. 2015; Arachidicoccus rhizosphaerae gen. nov., sp. nov., a plant-growth-promoting bacterium in the family Chitinophagaceae isolated from rhizosphere soil. Int J Syst Evol Microbiol65:578–586 [CrossRef][PubMed]
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  22. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  23. Moore D. D., Dowhan D.. 1995; Current protocols in molecular biology. In Preparation and Analysis of DNA pp2–11 Edited by Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. New York: Wiley;
    [Google Scholar]
  24. Qu J. H., Yuan H. L.. 2008; Sediminibacterium salmoneum gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from sediment of a eutrophic reservoir. Int J Syst Evol Microbiol58:2191–2194 [CrossRef][PubMed]
    [Google Scholar]
  25. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  26. Sangkhobol V., Skerman V. B. D.. 1981; Chitinophaga, a new genus of chitinolytic myxobacteria. Int J Syst Bacteriol31:285–293 [CrossRef]
    [Google Scholar]
  27. Sasser M.. 1990; Identification of bacteria through fatty acid analysis. In Methods in Phytobacteriology, pp. 199–204 . Edited by Klement Z., Rudolph K., Sands D. C.. Budapest: Akademiai Kaido;
    [Google Scholar]
  28. Shiratori H., Tagami Y., Morishita T., Kamihara Y., Beppu T., Ueda K.. 2009; Filimonas lacunae gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from fresh water. Int J Syst Evol Microbiol59:1137–1142 [CrossRef][PubMed]
    [Google Scholar]
  29. Siddiqi M. Z., Im W.-T.. 2016a; Pseudobacter ginsenosidimutans gen. nov., sp. nov., isolated from ginseng cultivating soil. Int J Syst Evol Microbiol in press, doi: [CrossRef]
    [Google Scholar]
  30. Siddiqi M. Z., Im W. T.. 2016b; Niabella aquatica sp. nov., isolated from lake water. Int J Syst Evol Microbiol
    [Google Scholar]
  31. Siddiqi M. Z., Muhammad Shafi S., Choi K. D., Im W. T.. 2016c; Compostibacter hankyongensis gen. nov., sp. nov., isolated from compost. Int J Syst Evol Microbiol in press, doi:
    [Google Scholar]
  32. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–655 . Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  33. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  34. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  35. Xie C. H., Yokota A.. 2006; Reclassification of [Flavobacterium] ferrugineum as Terrimonas ferruginea gen. nov., comb. nov., and description of Terrimonas lutea sp. nov., isolated from soil. Int J Syst Evol Microbiol56:1117–1121 [CrossRef][PubMed]
    [Google Scholar]
  36. Zhang K., Tang Y., Zhang L., Dai J., Wang Y., Luo X., Liu M., Luo G., Fang C.. 2009; Parasegetibacter luojiensis gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from a forest soil. Int J Syst Evol Microbiol59:3058–3062 [CrossRef][PubMed]
    [Google Scholar]
  37. Zhang N. N., Qu J. H., Yuan H. L., Sun Y. M., Yang J. S.. 2010; Flavihumibacter petaseus gen. nov., sp. nov., isolated from soil of a subtropical rainforest. Int J Syst Evol Microbiol60:1609–1612 [CrossRef][PubMed]
    [Google Scholar]
  38. Zhang L., Wang Y., Wei L., Wang Y., Shen X., Li S.. 2013; Taibaiella smilacinae gen. nov., sp. nov., an endophytic member of the family Chitinophagaceae isolated from the stem of Smilacina japonica, and emended description of Flavihumibacter petaseus. Int J Syst Evol Microbiol63:3769–3776 [CrossRef][PubMed]
    [Google Scholar]
  39. Zhao R., Chen X. Y., Li X. D., Tian Y., Kong B. H., Chen Z. L., Li Y. H.. 2014; Cnuella takakiae gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from Takakia lepidozioides. Int J Syst Evol Microbiol64:607–612 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001307
Loading
/content/journal/ijsem/10.1099/ijsem.0.001307
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error