sp. nov., isolated from a heavy-metal-contaminated paddy field Free

Abstract

Strain TBZ30 was isolated from soil of a heavy-metal-contaminated paddy field. Cells of strain TBZ30 were Gram-staining-negative, rod-shaped, non-motile and non-spore-forming. The isolate was strictly aerobic, pink-pigmented, catalase- and oxidase-positive and produced exopolysaccharides. On the basis of 16S rRNA gene phylogeny, strain TBZ30 belonged to the genus and appeared most closely related to YC7003 (95.8 %), BR-18 (95.4 %) and MP1X4 (95.4 %). Strain TBZ30 contained menaquinone-7 as the only ubiquinone. The main cellular fatty acids included summed feature 3 (C 7 and/or iso-C 2-OH), iso-C, C, iso-C 3-OH and C 5. The polar lipids were phosphatidylethanolamine, an unidentified phospholipid, two unidentified aminophospholipids, four unidentified aminolipids, three unidentified lipids and two unidentified glycolipids. The genomic DNA G+C content was 49.0 mol%. On the basis of polyphasic taxonomy analyses, strain TBZ30 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is TBZ30 (=KCTC 42833=CCTCC AB 2015301).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001306
2016-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/4033.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001306&mimeType=html&fmt=ahah

References

  1. An D. S., Yin C. R., Lee S. T., Cho C. H. 2009; Mucilaginibacter daejeonensis sp. nov., isolated from dried rice straw. Int J Syst Evol Microbiol 59:1122–1125 [View Article][PubMed]
    [Google Scholar]
  2. Baek K., Ok Jeon C. 2015; Mucilaginibacter vulcanisilvae sp. nov., isolated from a volcanic forest. Int J Syst Evol Microbiol 65:2036–2041 [View Article][PubMed]
    [Google Scholar]
  3. Baik K. S., Park S. C., Kim E. M., Lim C. H., Seong C. N. 2010; Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter . Int J Syst Evol Microbiol 60:134–139 [View Article][PubMed]
    [Google Scholar]
  4. Bernardet J. F., Nakagawa Y., Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  5. Chen X. Y., Zhao R., Tian Y., Kong B. H., Li X. D., Chen Z. L., Li Y. H. 2014; Mucilaginibacter polytrichastri sp. nov., isolated from a moss (Polytrichastrum formosum), and emended description of the genus Mucilaginibacter . Int J Syst Evol Microbiol 64:1395–1400 [View Article][PubMed]
    [Google Scholar]
  6. Cui C. H., Choi T. E., Yu H., Jin F., Lee S. T., Kim S. C., Im W. T. 2011; Mucilaginibacter composti sp. nov., with ginsenoside converting activity, isolated from compost. J Microbiol 49:393–398 [View Article][PubMed]
    [Google Scholar]
  7. Dong X. Z., Cai M. Y. 2001 Determinative Manual for Routine Bacteriology Beijing: Scientific Press;
    [Google Scholar]
  8. Fan H., Su C., Wang Y., Yao J., Zhao K., Wang Y., Wang G. 2008; Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. J Appl Microbiol 105:529–539 [View Article][PubMed]
    [Google Scholar]
  9. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  10. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  11. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  12. Hwang Y. M., Baik K. S., Seong C. N. 2014; Mucilaginibacter defluvii sp. nov., isolated from a dye wastewater treatment facility. Int J Syst Evol Microbiol 64:565–571 [View Article][PubMed]
    [Google Scholar]
  13. Jiang F., Dai J., Wang Y., Xue X., Xu M., Guo Y., Li W., Fang C., Peng F. 2012; Mucilaginibacter soli sp. nov., isolated from Arctic tundra soil. Int J Syst Evol Microbiol 62:1630–1635 [View Article][PubMed]
    [Google Scholar]
  14. Joung Y., Joh K. 2011; Mucilaginibacter myungsuensis sp. nov., isolated from a mesotrophic artificial lake. Int J Syst Evol Microbiol 61:1506–1510 [View Article][PubMed]
    [Google Scholar]
  15. Kang C. H., Jung Y. T., Yoon J. H. 2013; Mucilaginibacter sabulilitoris sp. nov., isolated from marine sand in a firth. Int J Syst Evol Microbiol 63:2865–2871 [View Article][PubMed]
    [Google Scholar]
  16. Khan H., Chung E. J., Jeon C. O., Chung Y. R. 2013; Mucilaginibacter gynuensis sp. nov., isolated from rotten wood. Int J Syst Evol Microbiol 63:3225–3231 [View Article][PubMed]
    [Google Scholar]
  17. Kim D.-U., Lee H., Kim H., Kim S.-G., Park S. Y., Ka J. O. 2016; Mucilaginibacter carri sp. nov., isolated from a car air conditioning system. Int J Syst Evol 66:1754–1759 [View Article]
    [Google Scholar]
  18. Kim J.-H., Kang S.-J., Jung Y.-T., Oh T.-K., Yoon J.-H. 2012a; Mucilaginibacter lutimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 62:515–519 [View Article]
    [Google Scholar]
  19. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H. et al. 2012b; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article]
    [Google Scholar]
  20. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  21. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradorhizobium japonicum . Int J Syst Bacteriol 38:358–361 [View Article]
    [Google Scholar]
  22. Madhaiyan M., Poonguzhali S., Lee J. S., Senthilkumar M., Lee K. C., Sundaram S. 2010; Mucilaginibacter gossypii sp. nov. and Mucilaginibacter gossypiicola sp. nov., plant-growth-promoting bacteria isolated from cotton rhizosphere soils. Int J Syst Evol Microbiol 60:2451–2457 [View Article][PubMed]
    [Google Scholar]
  23. Männistö M. K., Tiirola M., McConnell J., Häggblom M. M. 2010; Mucilaginibacter frigoritolerans sp. nov., Mucilaginibacter lappiensis sp. nov. and Mucilaginibacter mallensis sp. nov., isolated from soil and lichen samples. Int J Syst Evol Microbiol 60:2849–2856 [View Article][PubMed]
    [Google Scholar]
  24. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  25. Montero-Calasanz M. C., Göker M., Rohde M., Spröer C., Schumann P., Busse H. J., Schmid M., Tindall B. J., Klenk H. P., Camacho M. 2013; Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium . Int J Syst Evol Microbiol 63:4386–4395 [View Article][PubMed]
    [Google Scholar]
  26. Pankratov T. A., Tindall B. J., Liesack W., Dedysh S. N. 2007; Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 57:2349–2354 [View Article][PubMed]
    [Google Scholar]
  27. Park C. S., Han K., Ahn T. Y. 2014; Mucilaginibacter koreensis sp. nov., isolated from leaf mould. Int J Syst Evol Microbiol 64:2274–2279 [View Article][PubMed]
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  29. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A., Kämpfer P., Maiden M. C., Nesme X., Rosselló-Mora R., Swings J. et al. 2002; Report of the ad hoc committee for the re- evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [View Article][PubMed]
    [Google Scholar]
  30. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  31. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [CrossRef]
    [Google Scholar]
  32. Tindall B. J., Sikorski J., Smibert R. M., Kreig N. R. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology, 3rd edn. pp. 330–393 Washington, DC: ASM Press;
    [Google Scholar]
  33. Urai M., Aizawa T., Nakagawa Y., Nakajima M., Sunairi M. 2008; Mucilaginibacter kameinonensis sp., nov., isolated from garden soil. Int J Syst Evol Microbiol 58:2046–2050 [View Article][PubMed]
    [Google Scholar]
  34. Yoon J. H., Kang S. J., Park S., Oh T. K. 2012; Mucilaginibacter litoreus sp. nov., isolated from marine sand. Int J Syst Evol Microbiol 62:2822–2827 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001306
Loading
/content/journal/ijsem/10.1099/ijsem.0.001306
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed