1887

Abstract

A Gram-stain-negative bacterium was isolated from Lake Michigan water. 16S rRNA gene sequence analysis revealed that strain 1458 had a sequence similarity to YT21, HME7863, SGM2-10, DCY13, DSM 30193, NJ-8, 3-3, RHYL-37, MU-2 and 5GHs7-2 with values of 93.4, 92.3, 91.9, 91.9, 91.8, 91.6, 91.6, 91.6, 91.5 and 90.4 %, respectively. The primary cellular fatty acids were iso-C, iso-C 3-OH, iso-CG and summed feature 3 (iso-C 2-OH/Cω7). The primary polar lipids were phosphatidylethanolamine and an unidentified polar lipid only detectable after total polar lipid staining. The quinone system was menaquinone MK-7, and in the polyamine pattern, homospermidine was predominant. Additional phenotypic characteristics included growth at 15 to 40 °C and pH 5.0 to 8.0, a salt tolerance range of 0 to 2.0 % (w/v), production of orange cell-bound pigment flexirubin, and gliding motility. After phenotypic, chemotaxonomic and molecular analyses, strain 1458 was identified as a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 1458 (=NRRL B-65305=LMG 29039). An emended description of the genus is also provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001305
2016-10-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/4027.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001305&mimeType=html&fmt=ahah

References

  1. Albert R. A., Waas N. E., Langer S., Pavlons S. C., Feldner J. L., Rosselló-Mora R., Busse H. J.. 2010; Labrys wisconsinensis sp. nov., a budding bacterium isolated from Lake Michigan water, and emended description of the genus Labrys. Int J Syst Evol Microbiol60:1570–1576 [CrossRef][PubMed]
    [Google Scholar]
  2. Albert R. A., Waas N. E., Pavlons S. C., Pearson J. L., Ketelboeter L., Rosselló-Móra R., Busse H.-J.. 2013; Sphingobacterium psychroaquaticum sp. nov., a psychrophilic bacterium isolated from Lake Michigan water. Int J Syst Evol Microbiol63:952–958 [CrossRef][PubMed]
    [Google Scholar]
  3. Albert R. A., Zitomer D., Dollhopf M., Schauer-Gimenez A. E., Struble C., King M., Son S., Langer S., Busse H.-J.. 2014; Proposal of Vibrionimonas magnilacihabitans gen. nov., sp. nov., a curved gram-stain-negative bacterium isolated from lake water. Int J Syst Evol Microbiol64:613–620 [CrossRef][PubMed]
    [Google Scholar]
  4. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J.. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol47:39–52 [CrossRef]
    [Google Scholar]
  5. Breznak J. A., Costilow R. N.. 1994; Physicochemical factors in growth. In Methods For General and Molecular Bacteriology pp137–154 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: ASM Press;
    [Google Scholar]
  6. Busse H.-J., Bunka S., Hensel A., Lubitz W.. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol47:698–708 [CrossRef]
    [Google Scholar]
  7. Busse J., Auling G.. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol11:1–8 [CrossRef]
    [Google Scholar]
  8. Feng S., Chen C., Wang Q. F., Zhang X. J., Yang Z. Y., Xie S. G.. 2013; Characterization of microbial communities in a granular activated carbon–sand dual media filter for drinking water treatment. Int J Environ Sci Tech10:917–922 [CrossRef]
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  10. Kim S.-J., Ahn J.-H., Weon H.-Y., Hong S.-B., Seok S.-J., Kwon S.-W.. 2015; Parasegetibacter terrae sp. nov., isolated from paddy soil and emended description of the genus Parasegetibacter. Int J Syst Evol Microbiol65:113–116 [CrossRef][PubMed]
    [Google Scholar]
  11. Leandro T., França L., Nobre M. F., Rainey F. A., da Costa M. S.. 2013; Heliimonas saccharivorans gen. nov., sp. nov., a member of the family Chitinophagaceae isolated from a mineral water aquifer, and emended description of Filimonas lacunae. Int J Syst Evol Microbiol63:3793–3799 [CrossRef][PubMed]
    [Google Scholar]
  12. Liao X., Chen C., Wang Z., Chang C.-H., Zhang X., Xie S.. 2015; Bacterial community change through drinking water treatment processes. Int J Environ Sci Tech12:1867–1874 [CrossRef]
    [Google Scholar]
  13. Lu P., Chen C., Wang Q., Wang Z., Zhang X., Xie S.. 2013; Phylogenetic diversity of microbial communities in real drinking water distribution systems. Biotech Bioprocess Eng18:119–124 [CrossRef]
    [Google Scholar]
  14. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. 2004; ARB: a software environment for sequence data. Nucleic Acids Res32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  15. McBride M. J., Zhu Y.. 2013; Gliding motility and Por secretion system genes are widespread among members of the phylum Bacteroidetes. J Bacteriol195:270–278 [CrossRef][PubMed]
    [Google Scholar]
  16. Mueller-Spitz S. R., Goetz G. W., McLellan S. L.. 2009; Temporal and spatial variability in nearshore bacterioplankton communities of Lake Michigan. FEMS Microbiol Ecol67:511–522 [CrossRef][PubMed]
    [Google Scholar]
  17. Newton R. J., McLellan S. L.. 2015; A unique assemblage of cosmopolitan freshwater bacteria and higher community diversity differentiate an urbanized estuary from oligotrophic Lake Michigan. Front Microbiol6:1–13 [CrossRef][PubMed]
    [Google Scholar]
  18. Newton R. J., Jones S. E., Eiler A., McMahon K. D., Bertilsson S.. 2011; A guide to the natural history of freshwater lake bacteria. Micro Mole Reviews75:14–49 [CrossRef]
    [Google Scholar]
  19. Norton C. D., LeChevallier M. W.. 2000; A pilot study of bacterial population changes through potable water treatment and distribution. App Environ Micro66:268–276 [CrossRef]
    [Google Scholar]
  20. Poitelon J. B ., Joyeux M., Welté B., Duguet J. P., Prestel E., Lespinet O., DuBow M. S.. 2009; Assessment of phylogenetic diversity of bacterial microflora in drinking water using serial analysis of ribosomal sequence tags. Water Res43:4197–4206 [CrossRef][PubMed]
    [Google Scholar]
  21. Pruesse E., Peplies J., Glöckner F. O.. 2012; SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  22. Saha R., Farrance C. E., Verghese B., Hong S., Donofrio R. S.. 2013; Klebsiella michiganensis sp. nov., a new bacterium isolated from a tooth brush holder. Curr Microbiol66:72–78 [CrossRef][PubMed]
    [Google Scholar]
  23. Santo-Domingo J. W., Meckes M. C., Simpson J. M., Sloss B., Reasoner D. J.. 2003; Molecular characterization of bacteria inhabiting a water distribution system simulator. Water Sci Tech47:149–154
    [Google Scholar]
  24. Shiratori H., Tagami Y., Morishita T., Kamihara Y., Beppu T., Ueda K.. 2009; Filimonas lacunae gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from fresh water. Int J Syst Evol Microbiol59:1137–1142 [CrossRef][PubMed]
    [Google Scholar]
  25. Smibert R. M., Krieg R. N.. 1994; Phenotypic characterization. In Methods For General and Molecular Bacteriology , pp.607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: ASM Press;
    [Google Scholar]
  26. Stamatakis A.. 2006; RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics22:2688–2690 [CrossRef][PubMed]
    [Google Scholar]
  27. Stolz A., Busse H.-J., Kampfer P.. 2007; Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol57:572–576 [CrossRef]
    [Google Scholar]
  28. Tindall B. J.. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol13:128–130 [CrossRef]
    [Google Scholar]
  29. Tindall B. J.. 1990b; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett66:199–202 [CrossRef]
    [Google Scholar]
  30. Yabuuchi E., Kaneko T., Yano I., Moss C. W., Miyoshi N.. 1983; Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and IIb. Int J Sys Bact33:580–598 [CrossRef]
    [Google Scholar]
  31. Yarza P., Ludwig W., Euzéby J., Amann R., Schleifer K.-H., Glöckner F. O., Rosselló-Móra R.. 2010; Update of the all-species living Tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol33:291–299 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001305
Loading
/content/journal/ijsem/10.1099/ijsem.0.001305
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error