1887

Abstract

A Gram-staining-negative, oval- or rod-shaped, non-motile bacterial strain, designated HDW-36, was isolated from seawater off the Korean peninsula. Strain HDW-36 was found to grow optimally at pH 7.0–8.0, at 25 °C and in the presence of 2–3 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain HDW-36 falls within the clade comprising thespecies of the genus , clustering with the type strains of and , with which it exhibited 95.9 % and 95.2 % sequence similarity values, respectively. The 16S rRNA gene sequence similarity values between strain HDW-36 and type strains of other species of the genus were 88.4–92.8 %. Strain HDW-36 was found to contain MK-7 as the predominant menaquinone and summed feature 3 (C 6 and/or C 7), iso-C and C as the major fatty acids. The major polar lipids were identified as phosphatidylethanolamine and an unidentified lipid. The DNA G+C content of strain HDW-36 was determined to be 60.9 mol%. Differential phenotypic properties, together with the phylogenetic distinctiveness, demonstrate that strain HDW-36 is distinguishable from other species of the genus . On the basis of the data presented, strain HDW-36 is considered to represent a novel species, for which the name sp. nov. is proposed. The type strain of is HDW-36 (=KCTC 42719=CECT 8901).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001299
2016-10-01
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/3989.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001299&mimeType=html&fmt=ahah

References

  1. Barrow G. I, Feltham R. K. A. 1993 Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  2. Baumann P., Baumann L. 1981; The marine gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes . In The Prokaryotes pp. 1302–1331 Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Berlin: Springer;
    [Google Scholar]
  3. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868 [View Article][PubMed]
    [Google Scholar]
  4. Bruns A., Rohde M., Berthe-Corti L. 2001; Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 51:1997–2006 [View Article][PubMed]
    [Google Scholar]
  5. CLSI 2012 Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Eleventh Edition CLSI Document M02-A11 Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  6. Cohen-Bazire G., Sistrom W. R., Stanier R. Y. 1957; Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 49:25–68 [View Article]
    [Google Scholar]
  7. Khan S. T., Fukunaga Y., Nakagawa Y., Harayama S. 2007; Emended descriptions of the genus Lewinella and of Lewinella cohaerens, Lewinella nigricans and Lewinella persica, and description of Lewinella lutea sp. nov. and Lewinella marina sp. nov. Int J Syst Evol Microbiol 57:2946–2951 [View Article][PubMed]
    [Google Scholar]
  8. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  9. Komagata K., Suzuki K. 1987; Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [CrossRef]
    [Google Scholar]
  10. Lányí B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Mocrobiol 19:1–67 [CrossRef]
    [Google Scholar]
  11. Lee S. D. 2007; Lewinella agarilytica sp. nov., a novel marine bacterium of the phylum Bacteroidetes, isolated from beach sediment. Int J Syst Evol Microbiol 57:2814–2818 [View Article][PubMed]
    [Google Scholar]
  12. Oh H.-M., Lee K., Cho J.-C. 2009; Lewinella antarctica sp. nov., a marine bacterium isolated from Antarctic seawater. Int J Syst Evol Microbiol 59:65–68 [View Article][PubMed]
    [Google Scholar]
  13. Park S., Jung Y. T., Park J. M., Won S. M., Yoon J. H. 2015; Pedobacter silvilitoris sp. nov., isolated from wood falls. Int J Syst Evol Microbiol 65:1284–1289 [View Article][PubMed]
    [Google Scholar]
  14. Reichenbach H. 1992; The order Cytophagales . In The Prokaryotes, 2nd edn. vol. 4 pp. 3631–3675 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer; [CrossRef]
    [Google Scholar]
  15. Sly L. I., Taghavi M., Fegan M. 1998; Phylogenetic heterogeneity within the genus Herpetosiphon: transfer of the marine species Herpetosiphon cohaerens, Herpetosiphon nigricans and Herpetosiphon persicus to the genus Lewinella gen. nov. in the Flexibacter-Bacteroides-Cytophaga phylum. Int J Syst Bacteriol 48:731–737 [View Article][PubMed]
    [Google Scholar]
  16. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  17. Staley J. T. 1968; Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 95:1921–1942[PubMed]
    [Google Scholar]
  18. Sung H.-R., Lee J.-M., Kim M., Shin K.-S. 2015; Lewinella xylanilytica sp. nov., a member of the family Saprospiraceae isolated from coastal seawater. Int J Syst Evol Microbiol 65:3433–3438 [View Article][PubMed]
    [Google Scholar]
  19. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  20. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  21. Wayne L. G., Stackebrandt E., Kandler O., Colwell R. R., Krichevsky M. I., Truper H. G., Murray R. G. E., Moore W. E. C., Grimont P. A. D. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  22. Yoon J.-H., Kim H., Kim S. B., Kim H.-J., Kim W. Y., Lee S. T., Goodfellow M., Park Y.-H. 1996; Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 46:502–505 [View Article]
    [Google Scholar]
  23. Yoon J.-H., Lee S. T., Park Y.-H. 1998; Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rRNA gene sequences. Int J Syst Bacteriol 48:187–194 [View Article][PubMed]
    [Google Scholar]
  24. Yoon J.-H., Kang K. H., Park Y.-H. 2003; Psychrobacter jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 53:449–454 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.001299
Loading
/content/journal/ijsem/10.1099/ijsem.0.001299
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error