1887

Abstract

Species of the genus Trichococcus share high similarity of their 16S rRNA gene sequences (>99 %). Digital DNA–DNA hybridization values (dDDH) among type strains of all described species of the genus Trichococcus ( T. flocculiformis DSM 2094 , T. pasteurii DSM 2381 , T. collinsii DSM 14526 , T. palustris DSM 9172, and T. patagoniensis DSM 18806) indicated that Trichococcus sp. strain R210 represents a novel species of the genus Trichococcus . The dDDH values showed a low DNA relatedness between strain R210 and all other species of the genus Trichococcus (23–32%). Cells of strain R210 were motile, slightly curved rods, 0.63–1.40×0.48–0.90 µm and stained Gram-positive. Growth was optimal at pH 7.8 and at temperature of 30 °C. Strain R210 could utilize several carbohydrates, and the main products from glucose fermentation were lactate, acetate, formate and ethanol. The genomic DNA G+C content of strain R210 was 47.9 mol%. Based on morphological, physiological and biochemical characteristics along with measured dDDH values for all species of the genus Trichococcus , it is suggested that strain R210 represents a novel species within the genus Trichococcus , for which the name Trichococcus ilyis sp. nov. is proposed. The type strain is R210 (=DSM 22150=JCM 31247).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001294
2016-10-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/3957.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001294&mimeType=html&fmt=ahah

References

  1. Alikhan N. F., Petty N. K., Ben Zakour N. L., Beatson S. A..( 2011;). blast ring image generator (BRIG): simple prokaryote genome comparisons. . BMC Genomics 12: 402. [CrossRef] [PubMed]
    [Google Scholar]
  2. Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., Formsma K., Gerdes S., Glass E. M. et al.( 2008;). The RAST server: rapid annotations using subsystems technology. . BMC Genomics 9: 75. [CrossRef] [PubMed]
    [Google Scholar]
  3. Boetzer M., Henkel C. V., Jansen H. J., Butler D., Pirovano W..( 2011;). Scaffolding pre-assembled contigs using SSPACE. . Bioinformatics 27: 578–579. [CrossRef] [PubMed]
    [Google Scholar]
  4. Boisvert S., Raymond F., Godzaridis E., Laviolette F., Corbeil J..( 2012;). Ray Meta: scalable de novo metagenome assembly and profiling. . Genome Biol 13: 122. [CrossRef]
    [Google Scholar]
  5. Chikhi R., Medvedev P..( 2014;). Informed and automated k-mer size selection for genome assembly. . Bioinformatics 30: 31–37. [CrossRef] [PubMed]
    [Google Scholar]
  6. Eiteman M. A., Ramalingam S..( 2015;). Microbial production of lactic acid. . Biotechnol Lett 37: 955–972. [CrossRef] [PubMed]
    [Google Scholar]
  7. Gao S., Sung W. K., Nagarajan N..( 2011;). Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences. . J Comput Biol 18: 1681–1691. [CrossRef] [PubMed]
    [Google Scholar]
  8. Gnerre S., Maccallum I., Przybylski D., Ribeiro F. J., Burton J. N., Walker B. J., Sharpe T., Hall G., Shea T. P. et al.( 2011;). High-quality draft assemblies of mammalian genomes from massively parallel sequence data. . Proc Natl Acad Sci U S A 108: 1513–1518. [CrossRef] [PubMed]
    [Google Scholar]
  9. Huang X., Madan A..( 1999;). CAP3: A DNA sequence assembly program. . Genome Res 9: 868–877. [CrossRef] [PubMed]
    [Google Scholar]
  10. Hyatt D., Chen G. L., Locascio P. F., Land M. L., Larimer F. W., Hauser L. J..( 2010;). Prodigal: prokaryotic gene recognition and translation initiation site identification. . BMC Bioinformatics 11: 199. [CrossRef] [PubMed]
    [Google Scholar]
  11. Jones P., Binns D., Chang H. Y., Fraser M., Li W., McAnulla C., McWilliam H., Maslen J., Mitchell A. et al.( 2014;). InterProScan 5: genome-scale protein function classification. . Bioinformatics 30: 1236–1240. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kim M., Oh H. S., Park S. C., Chun J..( 2014;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. . Int J Syst Evol Microbiol 64: 346–351. [CrossRef] [PubMed]
    [Google Scholar]
  13. Klenk H. P., Göker M..( 2010;). En route to a genome-based classification of Archaea and Bacteria?. Syst Appl Microbiol 33: 175–182. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E..( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. . Int J Syst Evol Microbiol 38: 358–361.
    [Google Scholar]
  15. Kyrpides N. C., Hugenholtz P., Eisen J. A., Woyke T., Göker M., Parker C. T., Amann R., Beck B. J., Chain P. S. et al.( 2014;). Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains. . PLoS Biol 12: e1001920. [CrossRef] [PubMed]
    [Google Scholar]
  16. Lagesen K., Hallin P., Rødland E. A., Staerfeldt H. H., Rognes T., Ussery D. W..( 2007;). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. . Nucleic Acids Res 35: 3100–3108. [CrossRef] [PubMed]
    [Google Scholar]
  17. Liu J. R., Tanner R. S., Schumann P., Weiss N., McKenzie C. A., Janssen P. H., Seviour E. M., Lawson P. A., Allen T. D., Seviour R. J..( 2002;). Emended description of the genus Trichococcus, description of Trichococcus collinsii sp. nov., and reclassification of Lactosphaera pasteurii as Trichococcus pasteurii comb. nov. and of Ruminococcus palustris as Trichococcus palustris comb. nov. in the low-G+C gram-positive bacteria. . Int J Syst Evol Microbiol 52: 1113–1126. [CrossRef] [PubMed]
    [Google Scholar]
  18. Liu Y., Lai Q., Göker M., Meier-Kolthoff J. P., Wang M., Sun Y., Wang L., Shao Z..( 2015;). Genomic insights into the taxonomic status of the Bacillus cereus group. . Sci Rep 5: 14082. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lowe T. M., Eddy S. R..( 1997;). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. . Nucleic Acids Res 25: 955–964. [CrossRef] [PubMed]
    [Google Scholar]
  20. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al.( 2004;). ARB: a software environment for sequence data. . Nucleic Acids Res 32: 1363–1371. [CrossRef] [PubMed]
    [Google Scholar]
  21. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M..( 2013;). Genome sequence-based species delimitation with confidence intervals and improved distance functions. . BMC Bioinformatics 14: 60. [CrossRef] [PubMed]
    [Google Scholar]
  22. Meier-Kolthoff J. P., Klenk H. P., Göker M..( 2014;). Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. . Int J Syst Evol Microbiol 64: 352–356. [CrossRef] [PubMed]
    [Google Scholar]
  23. Miller L. T..( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16: 584–586.[PubMed]
    [Google Scholar]
  24. Moriya Y., Itoh M., Okuda S., Yoshizawa A. C., Kanehisa M..( 2007;). KAAS: an automatic genome annotation and pathway reconstruction server. . Nucleic Acids Res 35: W182–W185. [CrossRef] [PubMed]
    [Google Scholar]
  25. Mulligan C., Fischer M., Thomas G. H..( 2011;). Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. . FEMS Microbiol Rev 35: 68–86. [CrossRef] [PubMed]
    [Google Scholar]
  26. Okochi M., Kurimoto M., Shimizu K., Honda H..( 2007;). Increase of organic solvent tolerance by overexpression of manXYZ in Escherichia coli. . Appl Microbiol Biotechnol 73: 1394–1399. [CrossRef] [PubMed]
    [Google Scholar]
  27. Petit E., LaTouf W. G., Coppi M. V., Warnick T. A., Currie D., Romashko I., Deshpande S., Haas K., Alvelo-Maurosa J. G. et al.( 2013;). Involvement of a bacterial microcompartment in the metabolism of fucose and rhamnose by Clostridium phytofermentans. . PLoS One 8: 1–12. [CrossRef] [PubMed]
    [Google Scholar]
  28. Pikuta E. V., Hoover R. B., Bej A. K., Marsic D., Whitman W. B., Krader P. E., Tang J..( 2006;). Trichococcus patagoniensis sp. nov., a facultative anaerobe that grows at -5 degrees C, isolated from penguin guano in Chilean Patagonia. . Int J Syst Evol Microbiol 56: 2055–2062. [CrossRef] [PubMed]
    [Google Scholar]
  29. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F. O..( 2013;). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. . Nucleic Acids Res 41: D590–D596. [CrossRef] [PubMed]
    [Google Scholar]
  30. Scheff G., Salcher O., Lingens F..( 1984;). Trichococcus flocculiformis gen. nov. sp. nov. a new gram-positive filamentous bacterium isolated from bulking sludge. . Appl Environ Microbiol 19: 114–119. [CrossRef]
    [Google Scholar]
  31. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S. et al.( 2012;). Fiji: an open-source platform for biological-image analysis. . Nat Methods 9: 676–682. [CrossRef] [PubMed]
    [Google Scholar]
  32. Schink B..( 1984;). Fermentation of tartrate enantiomers by anaerobic bacteria, and description of two new species of strict anaerobes, Ruminococcus pasteurii and Ilyobacter tartaricus. . Arch Microbiol 139: 409–414. [CrossRef]
    [Google Scholar]
  33. Schleifer K. H..( 2009;). Classification of Bacteria and Archaea: past, present and future. . Syst Appl Microbiol 32: 533–542. [CrossRef] [PubMed]
    [Google Scholar]
  34. Stams A. J., Van Dijk J. B., Dijkema C., Plugge C. M..( 1993;). Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. . Appl Environ Microbiol 59: 1114–1119.[PubMed]
    [Google Scholar]
  35. Stams A. J. M., Huisman J., Garcia Encina P. A., Muyzer G..( 2009;). Citric acid wastewater as electron donor for biological sulfate reduction. . Appl Environ Microbiol 83: 957–963. [CrossRef]
    [Google Scholar]
  36. Suzek B. E., Huang H., McGarvey P., Mazumder R., Wu C. H..( 2007;). UniRef: comprehensive and non-redundant UniProt reference clusters. . Bioinformatics 23: 1282–1288. [CrossRef] [PubMed]
    [Google Scholar]
  37. The UniProt Consortium( 2014;). Activities at the universal protein resource (UniProt). . Nucleic Acids Res 42: 191–198.[CrossRef]
    [Google Scholar]
  38. van Gelder A. H., Aydin R., Alves M. M., Stams A. J..( 2012;). 1,3-Propanediol production from glycerol by a newly isolated Trichococcus strain. . Microb Biotechnol 5: 573–578. [CrossRef] [PubMed]
    [Google Scholar]
  39. Wang W., Sun J., Hartlep M., Deckwer W. D., Zeng A. P..( 2003;). Combined use of proteomic analysis and enzyme activity assays for metabolic pathway analysis of glycerol fermentation by Klebsiella pneumoniae. . Biotechnol Bioeng 83: 525–536. [CrossRef] [PubMed]
    [Google Scholar]
  40. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R..( 2008;). The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31: 241–250. [CrossRef] [PubMed]
    [Google Scholar]
  41. Zerbino D. R., Birney E..( 2008;). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. . Genome Res 18: 821–829. [CrossRef] [PubMed]
    [Google Scholar]
  42. Zhang Y. M., Rock C. O..( 2008;). Membrane lipid homeostasis in bacteria. . Nat Microbiol Rev 6: 222–233.[CrossRef]
    [Google Scholar]
  43. Zhilina T. N., Kotsyurbenko O. R., Osipov G. A., Kostrikina N. A., Zavarzin G. A..( 1995;). Ruminococcus palustris sp. nov.: a psychoractive anaerobic organism from a swamp. . Microbiology 64: 574–579.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001294
Loading
/content/journal/ijsem/10.1099/ijsem.0.001294
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error