1887

Abstract

A Gram-stain-negative, aerobic, non-flagellated and pleomorphic bacterium, designated HJR-2, was isolated from a junction between the ocean and a freshwater lake on the East Sea, South Korea. It grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 0–1.5 % (w/v) NaCl. In the neighbour-joining phylogenetic tree based on 16S rRNA gene sequences, strain HJR-2 clustered with the type strains of Vasilyevaea enhydra and Vasilyevaea mishustinii and this cluster fell within the clade comprising the type strains of Devosia species. Strain HJR-2 exhibited 16S rRNA gene sequence similarity values of 97.2 and 97.0 % to the type strains of V. enhydra and V. mishustinii , respectively, and 93.9–96.2 % to the type strains of Devosia species. Strain HJR-2 contained Q-10 as the predominant ubiquinone and C18 : 1 ω7c, 11-methyl C18 : 1 ω7c and C16 : 0 as major fatty acids. Major polar lipids of strain HJR-2 were phosphatidylglycerol and two unidentified glycolipids. The DNA G+C content was 66.0 mol% and its mean DNA–DNA relatedness values with the type strains of V. enhydra and V. mishustinii were 11–17 %. Differential phenotypic properties, together with its phylo genetic and genetic distinctiveness, revealed that strain HJR-2 is separated from V. enhydra , V. mishustinii and Devosia species. On the basis of the data presented, strain HJR-2 (=KCTC 52211=NBRC 112271) is considered to be the type strain of a novel species of the genus Devosia , for which the name Devosia confluentis sp. nov. is proposed. In this study, it is also proposed that V. enhydra and V. mishustinii be reclassified as members of the genus Devosia .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001291
2016-10-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/3935.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001291&mimeType=html&fmt=ahah

References

  1. Barrow G. I, Feltham R. K. A..( 1993;). Cowan and Steel’s Manual for the Identification of Medical Bacteria, , 3rd edn.. Cambridge:: Cambridge University Press;.[CrossRef]
    [Google Scholar]
  2. Bautista V. V., Monsalud R. G., Yokota A..( 2010;). Devosia yakushimensis sp. nov., isolated from root nodules of Pueraria lobata (Willd.) Ohwi. . Int J Syst Evol Microbiol 60: 627–632. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cohen-Bazire G., Sistrom W. R., Stanier R. Y..( 1957;). Kinetic studies of pigment synthesis by non-sulfur purple bacteria. . J Cell Comp Physiol 49: 25–68. [CrossRef]
    [Google Scholar]
  4. Du J., Kook M., Akter S., Singh H., Won K., Ngo H. T. T., Yi T.-H..( 2015;). Devosia humi sp. nov isolated from 1 soil of Korean Pine garden. . Int J Syst Evol Microbiol 66: 341–346.[CrossRef]
    [Google Scholar]
  5. Embley T. M., Wait R..( 1994;). Structural lipids of eubacteria. . In Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics, pp. 121–161. Edited by Goodfellow M., O’Donnell A. G.. Chichester:: John Wiley & Sons;.
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E..( 1989;). Fluorometric Deoxyribonucleic acid-Deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39: 224–229. [CrossRef]
    [Google Scholar]
  7. Kämpfer P., Steiof M., Dott W..( 1991;). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21: 227–251. [CrossRef] [PubMed]
    [Google Scholar]
  8. Komagata K., Suzuki K..( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19: 161–207.[CrossRef]
    [Google Scholar]
  9. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clark W. A..( 1992;). International Code of Nomenclature of Bacteria (1990 Revision). Bacteriological Code . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  10. Lányí B..( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19: 1–67.[CrossRef]
    [Google Scholar]
  11. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H..( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2: 233–241. [CrossRef]
    [Google Scholar]
  12. Nakagawa Y., Sakane T., Yokota A..( 1996;). Transfer of Pseudomonas riboflavina (Foster 1944), a gram-negative, motile rod with long-chain 3-hydroxy fatty acids, to Devosia riboflavina gen. nov., sp. nov., nom. rev. . Int J Syst Bacteriol 46: 16–22. [CrossRef] [PubMed]
    [Google Scholar]
  13. Oertli G. E., Jenkins C., Ward N., Rainey F., Stackebrant E., Staley J. T..( 2006;). The Genera Prosthecomicrobium and Ancalomicrobium. . In The Prokaryotes: A Handbook on the Biology of Bacteria, , 3rd edn.,vol. 5 pp. 65–71. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E.. New York:: Springer;.
    [Google Scholar]
  14. Park S., Park D. S., Bae K. S., Yoon J. H..( 2014;). Phaeobacter aquaemixtae sp. nov., isolated from the junction between the ocean and a freshwater spring. . Int J Syst Evol Microbiol 64: 1378–1383. [CrossRef] [PubMed]
    [Google Scholar]
  15. Parte A. C..( 2014;). LPSN—list of prokaryotic names with standing in nomenclature. . Nucleic Acids Res 42: D613–D616. [CrossRef] [PubMed]
    [Google Scholar]
  16. Sasser M..( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101. Newark, DE:: MIDI. Inc;.
    [Google Scholar]
  17. Stackebrandt E., Goebel B. M..( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Evol Microbiol 44: 846–849. [CrossRef]
    [Google Scholar]
  18. Staley J. T..( 1968;). Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. . J Bacteriol 95: 1921–1942.[PubMed]
    [Google Scholar]
  19. Tamaoka J., Komagata K..( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25: 125–128. [CrossRef]
    [Google Scholar]
  20. Vasil’eva L. V, Semenov A. M., Giniyatullina A. I.( 1991;). A new species of soil bacteria of the genus Prosthecomicrobium. . Microbiology 60: 243–250.
    [Google Scholar]
  21. Vasil’eva L. V, Semenov A. M., Giniyatullina A. I.( 2009;). Prosthecomicrobium consociatum sp. nov. and Prosthecomicrobium mishustinii sp. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published, Validation List no. 127. . Int J Syst Evol Microbiol 59: 923–925.[CrossRef]
    [Google Scholar]
  22. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I, Moore L. H., Moore W. E. C., Murray R. G. E. et al.( 1987;). International committee on systematic bacteriology. report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37: 463–464.[CrossRef]
    [Google Scholar]
  23. Yee B., Oertli G. E., Fuerst J. A., Staley J. T..( 2010;). Reclassification of the polyphyletic genus Prosthecomicrobium to form two novel genera, Vasilyevaea gen. nov. and Bauldia gen. nov. with four new combinations: Vasilyevaea enhydra comb. nov., Vasilyevaea mishustinii comb. nov., Bauldia consociata comb. nov. and Bauldia litoralis comb. nov. . Int J Syst Evol Microbiol 60: 2960–2966. [CrossRef] [PubMed]
    [Google Scholar]
  24. Yoon J. H., Lee S. T., Park Y. H..( 1998;). Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. . Int J Syst Bacteriol 48: 187–194. [CrossRef] [PubMed]
    [Google Scholar]
  25. Yoon J. H., Kang K. H., Park Y. H..( 2003;). Psychrobacter jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. . Int J Syst Evol Microbiol 53: 449–454. [CrossRef] [PubMed]
    [Google Scholar]
  26. Yoon J. H., Kang S. J., Park S., Oh T. K..( 2007;). Devosia insulae sp. nov., isolated from soil, and emended description of the genus Devosia. . Int J Syst Evol Microbiol 57: 1310–1314. [CrossRef] [PubMed]
    [Google Scholar]
  27. Yoon J.-H., Kim H., Kim S.-B., Kim H.-J., Kim W. Y., Lee S. T., Goodfellow M., Park Y.-H..( 1996;). Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. . Int J Syst Bacteriol 46: 502–505. [CrossRef]
    [Google Scholar]
  28. Zhang D. C., Redzic M., Liu H. C., Zhou Y. G., Schinner F., Margesin R..( 2012;). Devosia psychrophila sp. nov. and Devosia glacialis sp. nov., from alpine glacier cryoconite, and an emended description of the genus Devosia. . Int J Syst Evol Microbiol 62: 710–715. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001291
Loading
/content/journal/ijsem/10.1099/ijsem.0.001291
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error