1887

Abstract

A novel sulfate-reducing bacterium, strain J2, was isolated from a serpentinized peridotite sample from the Indian Ocean. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain J2 clustered with the genus Desulfovibrio within the family Desulfovibrionaceae , but it showed low similarity (87.95 %) to the type species Desulfovibrio desulfuricans DSM 642. It was most closely related to Desulfovibrio portus MSL79 (96.96 %), followed by Desulfovibrio aespoeensis Aspo-2 (96.11 %), Desulfovibrio piezophilus C1TLV30 (96.04 %) and Desulfovibrio profundus DSM 11384 (95.17 %). Other available sequences shared less than 93.33 % 16S rRNA gene sequence similarity. Cells were Gram-staining-negative, anaerobic, motile vibrios (2–6×0.4–0.6 µm). Growth was observed at salinities ranging from 0.2 to 6 % (optimum 2.5 %), from pH 5 to 8 (optimum pH 6.5–7) and at temperatures between 9 and 40 °C (optimum 30–35 °C). J2 was piezophilic, growing optimally at 10 MPa (range 0–30 MPa). J2 used lactate, malate, pyruvate, formate and hydrogen as energy sources. Sulfate, thiosulfate, sulfite, fumarate and nitrate were used as terminal electron acceptors. Lactate and pyruvate were fermented. The main fatty acids were iso-C15 : 0, anteiso-C15 : 0, summed feature 9 (iso-C17 : 1ω9c and/or C16 : 0 10-methyl) and iso-C17 : 0. The DNA G+C content of strain J2 was 63.5 mol%. The combined genotypic and phenotypic data show that strain J2 represents a novel species of a novel genus in the family Desulfovibrionaceae , for which the name Pseudodesulfovibrio indicus gen. nov., sp. nov. is proposed, with the type strain J2 (=MCCC 1A01867 = DSM 101483). We also propose the reclassification of D. piezophilus as Pseudodesulfovibrio piezophilus comb. nov., D. profundus as Pseudodesulfovibrio profundus comb. nov., D. portus as Pseudodesulfovibrio portus comb. nov. and D. aespoeensis as Pseudodesulfovibrio aespoeensis comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001286
2016-10-01
2019-09-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/3904.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001286&mimeType=html&fmt=ahah

References

  1. Alain K., Marteinsson V. T., Miroshnichenko M. L., Bonch-Osmolovskaya E. A., Prieur D., Birrien J. L..( 2002;). Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. . Int J Syst Evol Microbiol 52: 1331–1339. [CrossRef] [PubMed]
    [Google Scholar]
  2. Alain K., Postec A., Grinsard E., Lesongeur F., Prieur D., Godfroy A..( 2010;). Thermodesulfatator atlanticus sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent. . Int J Syst Evol Microbiol 60: 33–38. [CrossRef] [PubMed]
    [Google Scholar]
  3. Alazard D., Dukan S., Urios A., Verhé F., Bouabida N., Morel F., Thomas P., Garcia J. L., Ollivier B..( 2003;). Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. . Int J Syst Evol Microbiol 53: 173–178. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bale S. J., Goodman K., Rochelle P. A., Marchesi J. R., Fry J. C., Weightman A. J., Parkes R. J..( 1997;). Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. . Int J Syst Bacteriol 47: 515–521. [CrossRef] [PubMed]
    [Google Scholar]
  5. Baron E. J., Summanen P., Downes J., Roberts M. C., Wexler H., Finegold S. M..( 1989;). Bilophila wadsworthia, gen. nov. and sp. nov., a unique Gram-negative anaerobic rod recovered from appendicitis specimens and human faeces. . J Gen Microbiol 135: 3405–3411. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cao J., Maignien L., Shao Z., Alain K., Jebbar M..( 2016;). Genome sequence of the piezophilic, mesophilic sulfate-reducing bacterium Desulfovibrio indicus J2T. . Genome Announc 4: e0021400216. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cord-Ruwisch R..( 1985;). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. . J Microbiol Methods 4: 33–36. [CrossRef]
    [Google Scholar]
  8. Devereux R., He S. H., Doyle C. L., Orkland S., Stahl D. A., LeGall J., Whitman W. B..( 1990;). Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. . J Bacteriol 172: 3609–3619.[PubMed]
    [Google Scholar]
  9. Gillis M., Vandamme P., De Vos P., Swings J., Kersters K..( 2001;). Polyphasic taxonomy. . In Bergey’s Manual of Systematic Bacteriology, pp. 43–48. Edited by Boone D. R., Castenholz R. W., Garrity G. M.. New York:: Springer;.[CrossRef]
    [Google Scholar]
  10. Hamdi O., Ben Hania W., Postec A., Bartoli M., Hamdi M., Bouallagui H., Fauque G., Ollivier B., Fardeau M. L..( 2013;). Isolation and characterization of Desulfocurvus thunnarius sp. nov., a sulfate-reducing bacterium isolated from an anaerobic sequencing batch reactor treating cooking wastewater. . Int J Syst Evol Microbiol 63: 4237–4242. [CrossRef] [PubMed]
    [Google Scholar]
  11. Heidelberg J. F., Seshadri R., Haveman S. A., Hemme C. L., Paulsen I. T., Kolonay J. F., Eisen J. A., Ward N., Methe B. et al.( 2004;). The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. . Nat Biotechnol 22: 554–559. [CrossRef] [PubMed]
    [Google Scholar]
  12. Khelaifia S., Fardeau M. L., Pradel N., Aussignargues C., Garel M., Tamburini C., Cayol J. L., Gaudron S., Gaill F., Ollivier B..( 2011;). Desulfovibrio piezophilus sp. nov., a piezophilic, sulfate-reducing bacterium isolated from wood falls in the Mediterranean Sea. . Int J Syst Evol Microbiol 61: 2706–2711. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  14. Klouche N., Basso O., Lascourrèges J. F., Cayol J. L., Thomas P., Fauque G., Fardeau M. L., Magot M..( 2009;). Desulfocurvus vexinensis gen. nov., sp. nov., a sulfate-reducing bacterium isolated from a deep subsurface aquifer. . Int J Syst Evol Microbiol 59: 3100–3104. [CrossRef] [PubMed]
    [Google Scholar]
  15. Liu C., Shao Z..( 2005;). Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. . Int J Syst Evol Microbiol 55: 1181–1186. [CrossRef] [PubMed]
    [Google Scholar]
  16. Ludwig W., Strunk O., Klugbauer S., Klugbauer N., Weizenegger M., Neumaier J., Bachleitner M., Schleifer K. H..( 1998;). Bacterial phylogeny based on comparative sequence analysis. . Electrophoresis 19: 554–568. [CrossRef] [PubMed]
    [Google Scholar]
  17. McOrist S., Gebhart C. J., Boid R., Barns S. M..( 1995;). Characterization of Lawsonia intracellularis gen. nov., sp. nov., the obligately intracellular bacterium of porcine proliferative enteropathy. . Int J Syst Bacteriol 45: 820–825. [CrossRef] [PubMed]
    [Google Scholar]
  18. Motamedi M., Pedersen K..( 1998;). Desulfovibrio aespoeensis sp. nov., a mesophilic sulfate-reducing bacterium from deep groundwater at Aspö hard rock laboratory, Sweden. . Int J Syst Bacteriol 48: 311–315. [CrossRef] [PubMed]
    [Google Scholar]
  19. Postgate J. R., Campbell L. L..( 1966;). Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria. . Bacteriol Rev 30: 732–738.[PubMed]
    [Google Scholar]
  20. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  21. Sasser M..( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  22. Sun B., Cole J. R., Sanford R. A., Tiedje J. M..( 2000;). Isolation and characterization of Desulfovibrio dechloracetivorans sp. nov., a marine dechlorinating bacterium growing by coupling the oxidation of acetate to the reductive dechlorination of 2-chlorophenol. . Appl Environ Microbiol 66: 2408–2413. [CrossRef] [PubMed]
    [Google Scholar]
  23. Sun B., Cole J. R., Sanford R. A., Tiedje J. M..( 2001;). Validation of publication of new names and new combinations previously effectively published outside the IJSEM. . Int J Syst Evol Microbiol 51: 1–2. [CrossRef] [PubMed]
    [Google Scholar]
  24. Suzuki D., Ueki A., Amaishi A., Ueki K..( 2009;). Desulfovibrio portus sp. nov., a novel sulfate-reducing bacterium in the class Deltaproteobacteria isolated from an estuarine sediment. . J Gen Appl Microbiol 55: 125–133. [CrossRef] [PubMed]
    [Google Scholar]
  25. Suzuki D., Ueki A., Amaishi A., Ueki K..( 2010;). Desulfovibrio portus sp. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published, Validation List no. 136. . Int J Syst Evol Microbiol 60: 2509–2510.[CrossRef]
    [Google Scholar]
  26. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S..( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28: 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  27. Thabet O. B., Wafa T., Eltaief K., Cayol J. L., Hamdi M., Fauque G., Fardeau M. L..( 2011;). Desulfovibrio legallis sp. nov.: a moderately halophilic, sulfate-reducing bacterium isolated from a wastewater digestor in Tunisia. . Curr Microbiol 62: 486–491. [CrossRef] [PubMed]
    [Google Scholar]
  28. Yarza P., Yilmaz P., Pruesse E., Glöckner F. O., Ludwig W., Schleifer K. H., Whitman W. B., Euzéby J., Amann R., Rosselló-Móra R..( 2014;). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. . Nat Rev Microbiol 12: 635–645. [CrossRef] [PubMed]
    [Google Scholar]
  29. Zeng X., Birrien J. L., Fouquet Y., Cherkashov G., Jebbar M., Querellou J., Oger P., Cambon-Bonavita M. A., Xiao X., Prieur D..( 2009;). Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life. . ISME J 3: 873–876. [CrossRef] [PubMed]
    [Google Scholar]
  30. Zhang J., Zhang Y., Quan X., Chen S., Afzal S..( 2013;). Enhanced anaerobic digestion of organic contaminants containing diverse microbial population by combined microbial electrolysis cell (MEC) and anaerobic reactor under Fe(III) reducing conditions. . Bioresour Technol 136: 273–280. [CrossRef] [PubMed]
    [Google Scholar]
  31. Zhao C., Gao Z., Qin Q., Li F., Ruan L..( 2012;). Desulfobaculum xiamenensis gen. nov., sp. nov., a member of the family Desulfovibrionaceae isolated from marine mangrove sediment. . Int J Syst Evol Microbiol 62: 1570–1575. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001286
Loading
/content/journal/ijsem/10.1099/ijsem.0.001286
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error