1887

Abstract

This study aimed to define the taxonomic status of a novel, phenetically distinct group of seven strains belonging to the genus , which were isolated from environmental soil and water samples collected in Central Bohemia, Czech Republic. Comparative sequence analyses of the 16S rRNA, and genes showed that all these strains formed respective tight clusters (intracluster sequence similarities of ≥99.8, ≥98.1 and ≥98.3 %, respectively), which were distant from all known species (≤98.2, ≤84.0 and ≤88.9 %, respectively). The average nucleotide identity and digital DNA–DNA hybridization values (≤83.5 and ≤27.4 %, respectively) between the whole-genome sequence of a group representative (strain ANC 4149) and those of known taxa were far below the thresholds used to discriminate between bacterial species. The seven strains also formed a tight and distinct cluster based on the genus-wide comparison of whole-cell mass fingerprints generated by matrix-assisted laser desorption/ionization time-of-flight MS and could be distinguished from all other members of the genus by the combination of their ability to assimilate glutarate and -tartrate and inability to grow at 37 °C and on -aspartate. It is concluded that the seven strains represent a novel species for which the name sp. nov. is proposed. The type strain is ANC 4149 (=CCM 8637=CCUG 67962=CNCTC 7530).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001285
2016-10-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/3897.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001285&mimeType=html&fmt=ahah

References

  1. Álvarez-Pérez S., Lievens B., Jacquemyn H., Herrera C. M.. 2013; Acinetobacter nectaris sp. nov. and Acinetobacter boissieri sp. nov., isolated from floral nectar of wild Mediterranean insect-pollinated plants. Int J Syst Evol Microbiol63:1532–1539 [CrossRef][PubMed]
    [Google Scholar]
  2. Baumann P., Doudoroff M., Stanier R. Y.. 1968; A study of the Moraxella group. II. Oxidative-negative species (genus Acinetobacter). J Bacteriol95:1520–1541[PubMed]
    [Google Scholar]
  3. Christensen H., Bisgaard M., Frederiksen W., Mutters R., Kuhnert P., Olsen J. E.. 2001; Is characterization of a single isolate sufficient for valid publication of a new genus or species? Proposal to modify recommendation 30b of the Bacteriological Code (1990 Revision). Int J Syst Evol Microbiol51:2221–2225 [CrossRef][PubMed]
    [Google Scholar]
  4. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. eds 1981; Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Juni E.. 1972; Interspecies transformation of Acinetobacter: genetic evidence for a ubiquitous genus. J Bacteriol112:917–931[PubMed]
    [Google Scholar]
  6. Juni E.. 2005; Genus II. Acinetobacter Brisou and Prévot 1954. In Bergey’s Manual of Systematic Bacteriology, 2nd edn.vol. 2, part B pp425–437 Edited by Garrity G. M., Brenner D. J., Krieg N. R., Staley J. T.. New York, NY: Springer-Verlag;
    [Google Scholar]
  7. Krizova L., Maixnerova M., Sedo O., Nemec A.. 2014; Acinetobacter bohemicus sp. nov. widespread in natural soil and water ecosystems in the Czech Republic. Syst Appl Microbiol37:467–473 [CrossRef][PubMed]
    [Google Scholar]
  8. Krizova L., McGinnis J., Maixnerova M., Nemec M., Poirel L., Mingle L., Sedo O., Wolfgang W., Nemec A.. 2015a; Acinetobacter variabilis sp. nov. (formerly DNA group 15 sensu Tjernberg & Ursing), isolated from humans and animals. Int J Syst Evol Microbiol65:857–863[CrossRef]
    [Google Scholar]
  9. Krizova L., Sedo O., Nemec A., Maixnerova M.. 2015b; Acinetobacter albensis sp. nov., isolated from natural soil and water ecosystems. Int J Syst Evol Microbiol65:3905–3912 [CrossRef]
    [Google Scholar]
  10. Meier-Kolthoff J. P., Auch A. F., Klenk H.-P., Göker M.. 2013a; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14:60 [CrossRef]
    [Google Scholar]
  11. Meier-Kolthoff J. P., Göker M., Spröer C., Klenk H.-P.. 2013b; When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol195:413–418 [CrossRef]
    [Google Scholar]
  12. Nemec A., Radolfova-Krizova L.. 2016; Acinetobacter pakistanensis Abbas et al. 2014 is a later heterotypic synonym of Acinetobacter bohemicus Krizova et al. 2014. Int J Syst Evol Microbiol in press, doi: [CrossRef]
    [Google Scholar]
  13. Nemec A., Krizova L., Maixnerova M., van der Reijden T. J., Deschaght P., Passet V., Vaneechoutte M., Brisse S., Dijkshoorn L.. 2011; Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU). Res Microbiol162:393–404 [CrossRef][PubMed]
    [Google Scholar]
  14. Nemec A., Musílek M., Maixnerová M., De Baere T., van der Reijden T. J., Vaneechoutte M., Dijkshoorn L.. 2009; Acinetobacter beijerinckii sp. nov. and Acinetobacter gyllenbergii sp. nov., haemolytic organisms isolated from humans. Int J Syst Evol Microbiol59:118–124 [CrossRef][PubMed]
    [Google Scholar]
  15. Nemec A., Radolfova-Krizova L., Maixnerova M., Vrestiakova E., Jezek P., Sedo O.. 2016; Taxonomy of haemolytic and/or proteolytic strains of the genus Acinetobacter with the proposal of Acinetobacter courvalinii sp. nov. (genomic species 14 sensu Bouvet & Jeanjean), Acinetobacter dispersus sp. nov. (genomic species 17), sp. nov., Acinetobacter proteolyticus sp. nov. and Acinetobacter vivianii sp. nov. Int J Syst Evol Microbiol66:1673–1685 [CrossRef][PubMed]
    [Google Scholar]
  16. Richter M., Rosselló-Móra R.. 2009; Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  17. Touchon M., Cury J., Yoon E. J., Krizova L., Cerqueira G. C., Murphy C., Feldgarden M., Wortman J., Clermont D. et al. 2014; The genomic diversification of the whole Acinetobacter genus: origins, mechanisms, and consequences. Genome Biol Evol6:2866–2882 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001285
Loading
/content/journal/ijsem/10.1099/ijsem.0.001285
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error