1887

Abstract

A novel facultatively anaerobic, rod-shaped bacterium, designated LAM1188, was isolated from the roots of rice () in Hubei Province. Cells of LAM1188 were Gram-stain-negative and motile. The temperature and pH ranges for growth were 15–40 °C (optimum: 30 °C) and pH 5–10 (optimum: pH 7), respectively. The strain did not require NaCl for growth but tolerated up to 3.5 % NaCl (w/v). Analysis of the 16S rRNA gene sequence indicated that the isolate represented a member of the genus , and was most closely related to MDA0585 and CC-SEYA-1 with 98.7 % and 97.3 % sequence similarity, respectively. The values of DNA–DNA hybridization between LAM1188 and JCM 14163 and CCUG 55175 were 54.0±2.1 % and 44.0±1.2 %, respectively. The major cellular fatty acids were C and summed feature 3 (Cω6 and/or Cω7). The main polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, four unidentified aminolipids and four unidentified lipids. The respiratory quinone was ubiquinone Q-8. The DNA G+C content was 64.1 mol% as determined by the method. On the basis of its phenotypic, chemotaxonomic and phylogenetic characteristics, strain LAM1188 is suggested to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is LAM1188 (=ACCC 19900=JCM 31180).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001284
2016-10-01
2020-09-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/3890.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001284&mimeType=html&fmt=ahah

References

  1. Bibi F., Yasir M., Song G.-C., Lee S.-Y., Chung Y.-R.. 2012; Diversity and characterization of endophytic bacteria associated with tidal flat plants and their antagonistic effects on oomycetous plant pathogens. Plant Pathol J28:20–31 [CrossRef]
    [Google Scholar]
  2. De Ley J., Cattoir H., Reynaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  3. Dong X. Z., Cai M. Y.. (editors) 2001; Determination of biochemical properties. In Manual for the Systematic Identification of General Bacteria , pp.366–367 Beijing: Science Press (in Chinese);
    [Google Scholar]
  4. Fang M. X., Zhang W. W., Zhang Y. Z., Tan H. Q., Zhang X. Q., Wu M., Zhu X. F.. 2012; Brassicibacter mesophilus gen. nov., sp. nov., a strictly anaerobic bacterium isolated from food industry wastewater. Int J Syst Evol Microbiol62:3018–3023 [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  7. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  8. Han X. Y., Han F. S., Segal J.. 2008; Chromobacterium haemolyticum sp. nov., a strongly haemolytic species. Int J Syst Evol Microbiol58:1398–1403 [CrossRef][PubMed]
    [Google Scholar]
  9. Huss V. A., Festl H., Schleifer K. H.. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  10. Jha P. N., Kumar A.. 2007; Endophytic colonization of Typha australis by a plant growth-promoting bacterium Klebsiella oxytoca strain GR-3. J Appl Microbiol103:1311–1320 [CrossRef][PubMed]
    [Google Scholar]
  11. Kämpfer P., Busse H. J., Scholz H. C.. 2009; Chromobacterium piscinae sp. nov. and Chromobacterium pseudoviolaceum sp. nov., from environmental samples. Int J Syst Evol Microbiol59:2486–2490 [CrossRef][PubMed]
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  13. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  14. Komagata K., Suzuki K.. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol19:161–207[CrossRef]
    [Google Scholar]
  15. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol3:208–218 [CrossRef]
    [Google Scholar]
  16. Marmur J., Doty P.. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  17. Martin P. A. W., Gundersen-Rindal D., Blackburn M., Buyer J.. 2007; Chromobacterium subtsugae sp. nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests. Int J Syst Evol Microbiol57:993–999 [CrossRef][PubMed]
    [Google Scholar]
  18. Menezes C. B. A., Tonin M. F., Corrêa D. B. A., Parma M., de Melo I. S. D., Zucchi T. D., Destéfano S. A. L., Fantinatti F.-G.. 2015; Chromobacterium amazonense sp. nov. isolated from water samples from the Rio Negro, Amazon, Brazil. Antonie Van Leeuwenhoek107:1057–1063 [CrossRef][PubMed]
    [Google Scholar]
  19. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  20. Ruan Z., Wang Y., Song J., Jiang S., Wang H., Li Y., Zhao B., Jiang R., Zhao B.. 2014; Kurthia huakuii sp. nov., isolated from biogas slurry, and emended description of the genus Kurthia. Int J Syst Evol Microbiol64:518–521 [CrossRef][PubMed]
    [Google Scholar]
  21. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  22. Sakamoto M., Suzuki M., Umeda M., Ishikawa I., Benno Y.. 2002; Reclassification of Bacteroides forsythus (Tanner et al., 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol52:841–849 [CrossRef][PubMed]
    [Google Scholar]
  23. Shin N. R., Whon T. W., Roh S. W., Kim M. S., Kim Y. O., Bae J. W.. 2012; Oceanisphaera sediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol62:1552–1557 [CrossRef][PubMed]
    [Google Scholar]
  24. Skerman V. B. D., McGowan V., Sneath P. H. A.. (editors) 1980; Approved lists of bacterial names. Int J Syst Evol Microbiol30:225–420 [CrossRef]
    [Google Scholar]
  25. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp.607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Soby S. D., Gadagkar S. R., Contreras C., Caruso F. L.. 2013; Chromobacterium vaccinii sp. nov., isolated from native and cultivated cranberry (Vaccinium macrocarpon Ait.) bogs and irrigation ponds. Int J Syst Evol Microbiol63:1840–1846 [CrossRef][PubMed]
    [Google Scholar]
  27. Spence C., Alff E., Johnson C., Ramos C., Donofrio N. M., Sundaresan V., Bais H.. 2014; Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biol14:130 [CrossRef][PubMed]
    [Google Scholar]
  28. Stackebrandt E., Goebel B. M.. 1994; Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol44:846–849 [CrossRef]
    [Google Scholar]
  29. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  30. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  31. Tindall B. J.. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol13:128–130 [CrossRef]
    [Google Scholar]
  32. Tindall B. J.. 1990b; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett66:199–202 [CrossRef]
    [Google Scholar]
  33. Tittsler R. P., Sandholzer L. A.. 1936; The use of semi-solid agar for the detection of bacterial motility. J Bacteriol31:575–580[PubMed]
    [Google Scholar]
  34. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703[PubMed]
    [Google Scholar]
  35. Xu X. W., Huo Y. Y., Wang C. S., Oren A., Cui H. L., Vedler E., Wu M.. 2011; Pelagibacterium halotolerans gen. nov., sp. nov. and Pelagibacterium luteolum sp. nov., novel members of the family Hyphomicrobiaceae. Int J Syst Evol Microbiol61:1817–1822 [CrossRef][PubMed]
    [Google Scholar]
  36. Young C.-C., Arun A. B., Lai W.-A., Chen W.-M., Chou J. H., Chao J. H., Shen F.-T., Rekha P. D., Kämpfer P.. 2008; Chromobacterium aquaticum sp. nov., isolated from spring water samples. Int J Syst Evol Microbiol58:877–880 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001284
Loading
/content/journal/ijsem/10.1099/ijsem.0.001284
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error