1887

Abstract

Two novel Gram-stain-positive, facultatively anerobic, rod-shaped, motile, endospore-forming bacterial strains, 9DM and 6DM, were isolated from Tuticorn, India. The high 16S rRNA gene sequence similarity (99.9 %) and DNA–DNA relatedness (88±2 %) indicated that strains 9DM and 6DM were members of a single species. Based on 16S rRNA gene sequence analysis these strains were identified as belonging to the genus and were related most closely to the type strains of (99.7 % sequence similarity) and (97.9 %). The DNA G+C content of strains 9DM and 6DM was 41.6 and 41.4 mol%, respectively. However, the level of DNA–DNA relatedness of these strains with KCTC 3890 and KCTC 3917 was only 40.9 0.8 and 39.8 0.9 %, respectively. Strains 9DM and 6DM were facultative anaerobes with optimal growth at 37 °C, at pH 7.0–8.0 and with 2–3 % (w/v) NaCl. The cell-wall peptidoglycan of strain 9DM contained -diaminopimelic acid. Polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, a phospholipid and three unknown lipids. The isoprenoid quinone was MK-7. Major fatty acids of strain 9DM were anteiso-C, iso-C, iso-C and anteiso-C. The results of phylogenetic, chemotaxonomic and biochemical tests allowed the clear differentiation of strains 9DM and 6DM, which are considered to represent a novel member of the genus , for which the name sp. nov. is proposed. The type strain is 9DM (= KCTC 33742=LMG 29102= CGMCC 1.15353).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001281
2016-10-01
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/3884.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001281&mimeType=html&fmt=ahah

References

  1. Arahal D. R., Ventosa A. 2002; Moderately halophilic and halotolerant species of Bacillus and related genera. In Applications And. Systematics of Bacillus and Relatives pp 83–99 Edited by Berkeley R., Heyndrickx M., Logan N., De Vos P. Oxford: Blackwell; [CrossRef]
    [Google Scholar]
  2. Chen Y. G., Zhang Y. Q., Xiao H. D., Liu Z. X., Yi L. B., Shi J. X., Zhi X. Y., Cui X. L., Li W. J. 2009; Pontibacillus halophilus sp. nov., a moderately halophilic bacterium isolated from a sea urchin. Int J Syst Evol Microbiol 59:1635–1639 [View Article][PubMed]
    [Google Scholar]
  3. Chen Y. G., Zhang Y. Q., Yi L. B., Li Z. Y., Wang Y. X., Xiao H. D., Chen Q. H., Cui X. L., Li W. J. 2010; Pontibacillus litoralis sp. nov., a facultatively anaerobic bacterium isolated from a sea anemone, and emended description of the genus Pontibacillus . Int J Syst Evol Microbiol 60:560–565 [View Article][PubMed]
    [Google Scholar]
  4. Hasegawa T., Takizaea M., Tanida S. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322 [View Article]
    [Google Scholar]
  5. Kates M. 1972 Techniques of Lipidology pp 330–342 New York: Elsevier;
    [Google Scholar]
  6. Kates M. 1986 Techniques of Lipidology: Isolation, Analysis, and Identification of Lipids pp 330–348 Amsterdam: Elsevier;
    [Google Scholar]
  7. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  8. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  9. Kodaka H., Armfield A. Y., Lombard G. L., Dowell V. R. 1982; Practical procedure for demonstrating bacterial flagella. J Clin Microbiol 16:948–952[PubMed]
    [Google Scholar]
  10. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. 2007; clustal w and clustal x version 2.0. Bioinformatics 23:2947–2948 [View Article]
    [Google Scholar]
  11. Lee J. C., Kim Y. S., Yun B. S., Whang K. S. 2015; Pontibacillus salicampi sp. nov., a moderately halophilic bacterium isolated from saltern soil. Int J Syst Evol Microbiol 65:375–380 [View Article][PubMed]
    [Google Scholar]
  12. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184
    [Google Scholar]
  13. Lim J.-M., Jeon C. O., Song S. M., Kim C.-J. 2005a; Pontibacillus chungwhensis gen. nov., sp. nov., a moderately halophilic Gram-positive bacterium from a solar saltern in Korea. Int J Syst Evol Microbiol 55:165–170 [View Article]
    [Google Scholar]
  14. Lim J.-M., Jeon C. O., Park D.-J., Kim H.-R., Yoon B.-J., Kim C.-J. 2005b; Pontibacillus marinus sp. nov., a moderately halophilic bacterium from a solar saltern, and emended description of the genus Pontibacillus . Int J Syst Evol Microbiol 55:1027–1031 [View Article]
    [Google Scholar]
  15. Logan N. A., Berge O., Bishop A. H., Busse H. J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L. et al. 2009; Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  16. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  17. Meier-Kolthoff J. P., Göker M., Spröer C., Klenk H. P. 2013; When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 195:413–418 [View Article][PubMed]
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Evol Microbiol 39:159–167 [View Article]
    [Google Scholar]
  19. Oren A., Duker S., Ritter S. 1996; The polar lipid composition of walsby's square bacterium. FEMS Microbiol Lett 138:135–140 [View Article]
    [Google Scholar]
  20. Oren A. 2002; Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63 [View Article][PubMed]
    [Google Scholar]
  21. Parte A. C. 2016; List of prokaryotic names with standing in nomenclature. http://www.bacterio.net
  22. Reddy S. V., Aspana S., Tushar D. L., Sasikala C., Ramana C. 2013; Spirochaeta sphaeroplastigenens sp. nov., a halo-alkaliphilic, obligately anaerobic spirochaete isolated from soda lake Lonar. Int J Syst Evol Microbiol 63:2223–2228 [View Article][PubMed]
    [Google Scholar]
  23. Sasser M. 1990 Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  24. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477[PubMed]
    [Google Scholar]
  25. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156 [CrossRef]
    [Google Scholar]
  26. Smibert R. M., Krieg N. R. 1981; General characterization. In Manual of Methods for General Microbiology pp 409–443 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp 607–654 Edited by Gerhardt P. Washington DC: American Society for Microbiology;
    [Google Scholar]
  28. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849 [View Article]
    [Google Scholar]
  29. Stackebrandt E., Ebers J. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 4:152–155
    [Google Scholar]
  30. Tamaoka J., Katayama-Fujimura Y., Kuraishi H. 1983; Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36 [View Article]
    [Google Scholar]
  31. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  32. Tindall B. J. 1990a; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  33. Tindall B. J. 1990b; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [View Article]
    [Google Scholar]
  34. Tourova T. P., Antonov A. S. 1987; Identification of microorganisms by rapid DNA-DNA hybridization. Meth Microbiol 19:333–355 [CrossRef]
    [Google Scholar]
  35. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic Gram-negative rods. Microbiology 128:1959–1968 [View Article]
    [Google Scholar]
  36. Ventosa A., Nieto J. J., Oren A. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544[PubMed]
    [Google Scholar]
  37. Ventosa A. 2006; Unusual micro-organisms from unusual habitats: hypersaline environments. In Prokaryotic Diversity: Mechanisms and Significance pp 223–254 Edited by Logan N. A., Lappin-Scott H. M., Oyston P. C. F. Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  38. Yang Y., Zou Z., He M., Wang G. 2011; Pontibacillus yanchengensis sp. nov., a moderately halophilic bacterium isolated from salt field soil. Int J Syst Evol Microbiol 61:1906–1911 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.001281
Loading
/content/journal/ijsem/10.1099/ijsem.0.001281
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error