1887

Abstract

A Gram-stain-negative, moderately halophilic bacterium, designated strain CPS11, was isolated from the sediment of a solar pond located in Shinan, Korea. Strain CPS11 was a strictly aerobic, motile, straight rod-shaped bacterium that grew at pH 5.0–9.0 (optimum, pH 7.0–8.0), at 10–37 °C (optimum, 28 °C) and at salinities of 1–20 % (w/v) NaCl (optimum, 10 % NaCl). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain CPS11 belonged to the genus Halomonas , with sequence similarity of 98.5–94.3 % to existing type strains, showing highest sequence similarity to Halomonas fontilapidosi 5CR (98.5 %), Halomonas ventosae Al12 (98.5 %), Halomonas campaniensis 5AG (98.2 %), Halomonas huangheensis BJGMM-B45 (98.0 %), Halomonas alimentaria YKJ-16 (98.0 %), Halomonas mongoliensis Z-7009 (97.8 %), Halomonas shengliensis SL014B-85 (97.5 %) and Halomonas cupida DSM 4740 (97.5 %). The predominant ubiquinone was Q-9. The major fatty acids were C19 : 0 cyclo ω8c, C16 : 1 ω7c and/or iso-C15 : 0 2-OH, C16 : 0, C17 : 0 cyclo, C12 : 0 3-OH and C18 : 1 ω7c. The polar lipids were phosphatidylglycerol, phosphatidylethanolamine, aminophospholipid, an unknown phospholipid and unknown lipids. The DNA G+C content of this novel isolate was 64.3 mol%. Levels of DNA–DNA relatedness between strain CPS11 and the type strains of ten other species of the genus ranged from 50 to 21 %. On the basis of the polyphasic analysis conducted in this study, strain CPS11 represents a novel species of the genus Halomonas , for which the name Halomonas sediminicola sp. nov. is proposed. The type strain is CPS11(=KACC 18262=NBRC 110636).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001278
2016-10-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/3865.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001278&mimeType=html&fmt=ahah

References

  1. Anan’ina L. N., Plotnikova E. G., Gavrish E. Yu., Demakov V. A., Evtushenko L. I..( 2007;). Salinicola socius gen. nov., sp. nov., a moderately halophilic bacterium from a naphthalene-utilizing microbial association. . Microbiology 76: 324–330. [CrossRef]
    [Google Scholar]
  2. Arahal D. R., Ventosa A..( 2006;). The family Halomonadaceae. . In The Prokaryotes: A Handbook on the Biology of Bacteria, , 3rd edn.,vol. 6 , pp. 811–835. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E.. New York:: Springer;.
    [Google Scholar]
  3. Arahal D. R., Castillo A. M., Ludwig W., Schleifer K. H., Ventosa A..( 2002;). Proposal of Cobetia marina gen. nov., comb. nov., within the family Halomonadaceae, to include the species Halomonas marina. . Syst Appl Microbiol 25: 207–211. [CrossRef] [PubMed]
    [Google Scholar]
  4. Arahal D. R., Vreeland R. H., Litchfield C. D., Mormile M. R., Tindall B. J., Oren A., Bejar V., Quesada E., Ventosa A..( 2007;). Recommended minimal standards for describing new taxa of the family Halomonadaceae. . Int J Syst Evol Microbiol 57: 2436–2446. [CrossRef] [PubMed]
    [Google Scholar]
  5. Arenas M., Bañón P. I., Copa-Patiño J. L., Sánchez-Porro C., Ventosa A., Soliveri J..( 2009;). Halomonas ilicicola sp. nov., a moderately halophilic bacterium isolated from a saltern. . Int J Syst Evol Microbiol 59: 578–582. [CrossRef] [PubMed]
    [Google Scholar]
  6. Ben Ali Gam Z., Abdelkafi S., Casalot L., Tholozan J. L., Oueslati R., Labat M..( 2007;). Modicisalibacter tunisiensis gen. nov., sp. nov., an aerobic, moderately halophilic bacterium isolated from an oilfield-water injection sample, and emended description of the family Halomonadaceae Franzmann et al. 1989 emend Dobson and Franzmann 1996 emend. Ntougias et al. 2007. . Int J Syst Evol Microbiol 57: 2307–2313. [CrossRef] [PubMed]
    [Google Scholar]
  7. Boltyanskaya Y. V., Kevbrin V. V., Lysenko A. M., Kolganova T. V., Tourova T. P., Osipov G. A., Zhilina T. N..( 2007;). Halomonas mongoliensis sp. nov. and Halomonas kenyensis sp. nov., new haloalkaliphilic denitrifiers capable of N2O reduction, isolated from soda lakes. . Microbiology 76: 739–747. [CrossRef]
    [Google Scholar]
  8. Collins M. D., Jones D..( 1981;). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. . Microbiol Rev 45: 316–354.[PubMed]
    [Google Scholar]
  9. Cowan S. T., Steel K. J..( 1965;). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  10. de la Haba R. R., Arahal D. R., Márquez M. C., Ventosa A..( 2010;). Phylogenetic relationships within the family Halomonadaceae based on comparative 23S and 16S rRNA gene sequence analysis. . Int J Syst Evol Microbiol 60: 737–748. [CrossRef] [PubMed]
    [Google Scholar]
  11. DeLong E. F..( 1992;). Archaea in coastal marine environments. . Proc Natl Acad Sci U S A 89: 5685–5689. [CrossRef] [PubMed]
    [Google Scholar]
  12. Dobson S. J., Franzmann P. D..( 1996;). Unification of the genera Deleya (Baumann, et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson & Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. . Int J Syst Bacteriol 46: 550–558.[CrossRef]
    [Google Scholar]
  13. Ezaki T., Hashimoto Y., Yabuuchi E..( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39: 224–229. [CrossRef]
    [Google Scholar]
  14. Felsenstein J..( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  15. Felsenstein J..( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39: 783–791. [CrossRef]
    [Google Scholar]
  16. Fitch W. M..( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20: 406–416. [CrossRef]
    [Google Scholar]
  17. Franzmann P. D., Wehmeyer U., Stackebrandt E..( 1988;). Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. . Syst Appl Microbiol 11: 16–19. [CrossRef]
    [Google Scholar]
  18. Garriga M., Ehrmann M. A., Arnau J., Hugas M., Vogel R. F..( 1998;). Carnimonas nigrificans gen. nov., sp. nov., a bacterial causative agent for black spot formation on cured meat products. . Int J Syst Bacteriol 48: 677–686. [CrossRef] [PubMed]
    [Google Scholar]
  19. González-Domenech C. M., Martínez-Checa F., Quesada E., Béjar V..( 2008;). Halomonas cerina sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. . Int J Syst Evol Microbiol 58: 803–809. [CrossRef] [PubMed]
    [Google Scholar]
  20. González-Domenech C. M., Martínez-Checa F., Quesada E., Béjar V..( 2009;). Halomonas fontilapidosi sp. nov., a moderately halophilic, denitrifying bacterium. . Int J Syst Evol Microbiol 59: 1290–1296. [CrossRef] [PubMed]
    [Google Scholar]
  21. Guan T. W., Xiao J., Zhao K., Luo X. X., Zhang X. P., Zhang L. L..( 2010;). Halomonas xinjiangensis sp. nov., a halotolerant bacterium isolated from a salt lake. . Int J Syst Evol Microbiol 60: 349–352. [CrossRef] [PubMed]
    [Google Scholar]
  22. Guzmán D., Quillaguamán J., Muñoz M., Hatti-Kaul R..( 2010;). Halomonas andesensis sp. nov., a moderate halophile isolated from the saline lake Laguna Colorada in Bolivia. . Int J Syst Evol Microbiol 60: 749–753. [CrossRef] [PubMed]
    [Google Scholar]
  23. Jeong S. H., Lee J. H., Jung J. Y., Lee S. H., Park M. S., Jeon C. O..( 2013;). Halomonas cibimaris sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. . Antonie Van Leeuwenhoek 103: 503–512. [CrossRef] [PubMed]
    [Google Scholar]
  24. Jiang J., Pan Y., Hu S., Zhang X., Hu B., Huang H., Hong S., Meng J., Li C., Wang K..( 2014;). Halomonas songnenensis sp. nov., a moderately halophilic bacterium isolated from saline and alkaline soils. . Int J Syst Evol Microbiol 64: 1662–1669. [CrossRef] [PubMed]
    [Google Scholar]
  25. León M. J., Sánchez-Porro C., de la Haba R. R., Llamas I., Ventosa A..( 2015;). Corrigendum to ‘Larsenia salina gen. nov., sp. nov., a new member of the family Halomonadaceae based on multilocus sequence analysis’ [Syst. Appl. Microbiol. 37 (October (7) (2014) 480–487]. . Syst Appl Microbiol 38: 77. [CrossRef]
    [Google Scholar]
  26. Kaye J. Z., Márquez M. C., Ventosa A., Baross J. A..( 2004;). Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. . Int J Syst Evol Microbiol 54: 499–511. [CrossRef] [PubMed]
    [Google Scholar]
  27. Kim M. S., Roh S. W., Bae J. W..( 2010;). Halomonas jeotgali sp. nov., a new moderate halophilic bacterium isolated from a traditional fermented seafood. . J Microbiol 48: 404–410. [CrossRef] [PubMed]
    [Google Scholar]
  28. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  29. Kimura M..( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16: 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  30. Lányi B..( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19: 1–67.[CrossRef]
    [Google Scholar]
  31. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al.( 2007;). clustal w and clustal x version 2.0. . Bioinformatics 23: 2947–2948. [CrossRef] [PubMed]
    [Google Scholar]
  32. Lee J. C., Kim Y. S., Yun B. S., Whang K. S..( 2015;). Halomonas salicampi sp. nov., a halotolerant and alkalitolerant bacterium isolated from a saltern soil. . Int J Syst Evol Microbiol 65: 4792–4799. [CrossRef] [PubMed]
    [Google Scholar]
  33. Lim J. M., Yoon J. H., Lee J. C., Jeon C. O., Park D. J., Sung C., Kim C. J..( 2004;). Halomonas koreensis sp. nov., a novel moderately halophilic bacterium isolated from a solar saltern in Korea. . Int J Syst Evol Microbiol 54: 2037–2042. [CrossRef] [PubMed]
    [Google Scholar]
  34. Lim J. M., Jeon C. O., Song S. M., Kim C. J..( 2005;). Pontibacillus chungwhensis gen. nov., sp. nov., a moderately halophilic Gram-positive bacterium from a solar saltern in Korea. . Int J Syst Evol Microbiol 55: 165–170. [CrossRef] [PubMed]
    [Google Scholar]
  35. Luque R., Béjar V., Quesada E., Martínez-Checa F., Llamas I..( 2012;). Halomonas ramblicola sp. nov., a moderately halophilic bacterium from Rambla Salada, a Mediterranean hypersaline rambla. . Int J Syst Evol Microbiol 62: 2903–2909. [CrossRef] [PubMed]
    [Google Scholar]
  36. Martínez-Cánovas M. J., Quesada E., Llamas I., Béjar V..( 2004;). Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. . Int J Syst Evol Microbiol 54: 733–737. [CrossRef] [PubMed]
    [Google Scholar]
  37. Mata J. A., Martínez-Cánovas J., Quesada E., Béjar V..( 2002;). A detailed phenotypic characterisation of the type strains of Halomonas species. . Syst Appl Microbiol 25: 360–375. [CrossRef] [PubMed]
    [Google Scholar]
  38. Mellado E., Moore E. R. B., Nieto J. J., Ventosa A..( 1995;). Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui, Volcaniella eurihalina, and Deleya salina and reclassification of V. eurihalina as Halomonas eurihalina comb. nov. . Int J Syst Bacteriol 45: 712–716. [CrossRef] [PubMed]
    [Google Scholar]
  39. Mesbah M., Premachandran U., Whitman W. B..( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Evol Microbiol 39: 159–167. [CrossRef]
    [Google Scholar]
  40. Miao C., Jia F., Wan Y., Zhang W., Lin M., Jin W..( 2014;). Halomonas huangheensis sp. nov., a moderately halophilic bacterium isolated from a saline-alkali soil. . Int J Syst Evol Microbiol 64: 915–920. [CrossRef] [PubMed]
    [Google Scholar]
  41. Murray R. G. E., Doetsch R. N., Robinow F..( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology , pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  42. Ntougias S., Zervakis G. I., Fasseas C..( 2007;). Halotalea alkalilenta gen. nov., sp. nov., a novel osmotolerant and alkalitolerant bacterium from alkaline olive mill wastes, and emended description of the family Halomonadaceae Franzmann et al. 1989, emend. Dobson and Franzmann 1996. . Int J Syst Evol Microbiol 57: 1975–1983. [CrossRef] [PubMed]
    [Google Scholar]
  43. Okamoto T., Taguchi H., Nakamura K., Ikenaga H., Kuraishi H., Yamasato K..( 1993;). Zymobacter palmae gen. nov., sp. nov., a new ethanol-fermenting peritrichous bacterium isolated from palm sap. . Arch Microbiol 160: 333–337. [CrossRef] [PubMed]
    [Google Scholar]
  44. Parte A. C..( 2016;). List of prokaryotic names with standing in nomenclature. . http://www.bacterio.net.
  45. Quillaguamán J., Hatti-Kaul R., Mattiasson B., Alvarez M. T., Delgado O..( 2004;). Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. . Int J Syst Evol Microbiol 54: 721–725. [CrossRef] [PubMed]
    [Google Scholar]
  46. Romanenko L. A., Schumann P., Rohde M., Mikhailov V. V., Stackebrandt E..( 2002;). Halomonas halocynthiae sp. nov., isolated from the marine ascidian Halocynthia aurantium. . Int J Syst Evol Microbiol 52: 1767–1772. [CrossRef] [PubMed]
    [Google Scholar]
  47. Romano I., Giordano A., Lama L., Nicolaus B., Gambacorta A..( 2005;). Halomonas campaniensis sp. nov., a haloalkaliphilic bacterium isolated from a mineral pool of Campania Region, Italy. . Syst Appl Microbiol 28: 610–618. [CrossRef] [PubMed]
    [Google Scholar]
  48. Saito H., Miura K.-I..( 1963;). Preparation of transforming deoxyribonucleic acid by phenol treatment. . Biochim Biophys Acta 72: 619–629. [CrossRef]
    [Google Scholar]
  49. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  50. Sánchez-Porro C., de la Haba R. R., Soto-Ramírez N., Márquez M. C., Montalvo-Rodríguez R., Ventosa A..( 2009;). Description of Kushneria aurantia gen. nov., sp. nov., a novel member of the family Halomonadaceae, and a proposal for reclassification of Halomonas marisflavi as Kushneria marisflavi comb. nov., of Halomonas indalinina as Kushneria indalinina comb. nov. and of Halomonas avicenniae as Kushneria avicenniae comb. nov. . Int J Syst Evol Microbiol 59: 397–405. [CrossRef] [PubMed]
    [Google Scholar]
  51. Smibert R. M., Krieg N. R..( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology , pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  52. Tomaoka J., Komagata K..( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25: 125–128. [CrossRef]
    [Google Scholar]
  53. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S..( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28: 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  54. Ventosa A., Gutierrez M. C., Garcia M. T., Ruiz-Berraquero F..( 1989;). Classification of ‘Chromobacterium marismortui’ in a new genus, Chromohalobacter gen. nov., as Chromohalobacter marismortui comb. nov., nom. rev. . Int J Syst Bacteriol 39: 382–386. [CrossRef]
    [Google Scholar]
  55. Ventosa A., Nieto J. J., Oren A..( 1998;). Biology of moderately halophilic aerobic bacteria. . Microbiol Mol Biol Rev 62: 504–544.[PubMed]
    [Google Scholar]
  56. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E..( 1980;). Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. . Int J Syst Bacteriol 30: 485–495. [CrossRef]
    [Google Scholar]
  57. Wang C. Y., Wu S. J., Ng C. C., Tzeng W. S., Shyu Y. T..( 2012;). Halomonas beimenensis sp. nov., isolated from an abandoned saltern. . Int J Syst Evol Microbiol 62: 3013–3017. [CrossRef] [PubMed]
    [Google Scholar]
  58. Wang Y.-N., Cai H., Chi C.-Q., Lu A.-H., Lin X.-G., Jiang Z.-F., Wu X.-L..( 2007;). Halomonas shengliensis sp. nov., a moderately halophilic, denitrifying, crude-oil-utilizing bacterium. . Int J Syst Evol Microbiol 57: 1222–1226. [CrossRef] [PubMed]
    [Google Scholar]
  59. Wang Y., Tang S. K., Lou K., Lee J. C., Jeon C. O., Xu L. H., Kim C. J., Li W. J..( 2009;). Aidingimonas halophila gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt lake. . Int J Syst Evol Microbiol 59: 3088–3094. [CrossRef] [PubMed]
    [Google Scholar]
  60. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E..( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approches to bacterial systematics. . Int J Syst Bacteriol 37: 463–464.[CrossRef]
    [Google Scholar]
  61. Yabuuchi E., Kosako Y., Naka T., Suzuki S., Yano I..( 1999;). Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and Brown 1990) comb. nov., sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al. 1997) comb. nov., and emendation of the genus Sphingomonas. . Microbiol Immunol 43: 339–349. [CrossRef] [PubMed]
    [Google Scholar]
  62. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H..( 1990;). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. . Microbiol Immunol 34: 99–119. [CrossRef] [PubMed]
    [Google Scholar]
  63. Yoon J. H., Lee K. C., Kho Y. H., Kang K. H., Kim C. J., Park Y. H..( 2002;). Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. . Int J Syst Evol Microbiol 52: 123–130. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001278
Loading
/content/journal/ijsem/10.1099/ijsem.0.001278
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error