1887

Abstract

Four Gram-stain-positive, aerobic, motile bacterial strains were isolated from the bark tissue of × canker. Growth occurred between 10 and 37 °C and at pH 6–10, with optimal growth at 28–30 °C and pH 7.0–8.0. Growth occurred at 0–3 % (w/v) salinity. The strains were positive for oxidase and catalase activity. The major fatty acids were anteiso-C and C. The phospholipid profiles contained diphosphatidylglycerol, phosphatidylinositol, phosphatidylglycerol, two phospholipids and five glycolipids. The peptidoglycan type was A4, which is based on -Lys–-Ser–-Asp. The DNA G+C content was 58.5 mol%. Based on 16S rRNA gene sequence analysis, as well as physiological and biochemical characteristics, the strains are considered to represent a novel species of a new genus in the family . The name proposed is gen. nov., sp. nov. The type strain of is 2D-4 (=CFCC 11886=KCTC 33576).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001261
2016-09-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3743.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001261&mimeType=html&fmt=ahah

References

  1. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J.. 2002; Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol52:1551–1558 [CrossRef][PubMed]
    [Google Scholar]
  2. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridizationin microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229 [CrossRef]
    [Google Scholar]
  3. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  4. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. R.. 1981; Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Hulton C. S., Higgins C. F., Sharp P. M.. 1991; ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other Enterobacteriaceae. Mol Microbiol5:825–834 [CrossRef][PubMed]
    [Google Scholar]
  6. Jenkins D., Richard M. G., Daigger G. T.. 1986; Manual on the causes and control of activated sludge bulking and foaming Water Research Commission;
    [Google Scholar]
  7. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  8. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics , pp.115–175 Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  9. Li Y., He W., Wang T., Piao C. G., Guo L. M., Chang J. P., Guo M. W., Xie S. J.. 2014; Acinetobacter qingfengensis sp. nov., isolated from canker bark of Populus × euramericana. Int J Syst Evol Microbiol64:1043–1050 [CrossRef][PubMed]
    [Google Scholar]
  10. Li Y., Wang T., Fang W., Xue H., Piao C. G., Guo M. W., Zhu T. H.. 2015; Microbacterium populi sp. nov. isolated from Populus × euramericana bark. Int J Syst Evol Microbiol65:1444–1449[CrossRef]
    [Google Scholar]
  11. Louws F. J., Fulbright D. W., Stephens C. T., Bruijn F. J.. 1994; Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. App Environ Microb60:2286–2295
    [Google Scholar]
  12. MacKenzie S. L.. 1987; Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem70:151–160[PubMed]
    [Google Scholar]
  13. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol3:208–218 [CrossRef]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whithman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  15. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth2:233–241 [CrossRef]
    [Google Scholar]
  16. Mishra A. K., Lagier J. C., Robert C., Raoult D., Fournier P. E.. 2013; Genome sequence and description of Timonella senegalensis gen. nov., sp. nov., a new member of the suborder Micrococcinae. Stand Genomic Sci8:318–335 [CrossRef][PubMed]
    [Google Scholar]
  17. Rhuland L. E., Work E., Denman R. F., Hoare D. S.. 1955; The behaviour of the isomers of 2,6-diaminopimelic acid on paper chromatograms. J Am Chem Soc77:4844–4846 [CrossRef]
    [Google Scholar]
  18. Rocourt J., Wehmeyer U., Stackebrandt E.. 1987; Transfer of Listeria denitrificans to a new genus, Jonesia gen. nov., as Jonesia denitrificans comb. nov. Int J Syst Bacteriol37:266–270 [CrossRef]
    [Google Scholar]
  19. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. MIDI, Technical notes 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  20. Schleifer K. H., Kandler O.. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev36:407–477[PubMed]
    [Google Scholar]
  21. Schumann P., Cui X., Stackebrandt E., Kroppenstedt R. M., Xu L., Jiang C.. 2004; Jonesia quinghaiensis sp. nov., a new member of the suborder Micrococcineae. Int J Syst Evol Microbiol54:2181–2184 [CrossRef][PubMed]
    [Google Scholar]
  22. Schumann P.. 2011; Peptidoglycan structure. Methods Microbiol38:101–129[CrossRef]
    [Google Scholar]
  23. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Manual of Methods for General and Microbiology , pp.607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Stackebrandt E., Rainey F. A., Ward- Rainey N. L.. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol47:479–491 [CrossRef]
    [Google Scholar]
  25. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  26. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  27. Zhi X. Y., Li W. J., Stackebrandt E.. 2009; An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol59:589–608 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001261
Loading
/content/journal/ijsem/10.1099/ijsem.0.001261
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error