1887

Abstract

A Gram-reaction-positive, motile, yellow-pigmented and rod-shaped bacterial strain, designated AR33, was isolated from the rhizosphere of Salix caprea L. growing in a former zinc/lead mining and processing site in Austria. A polyphasic approach was applied to determine its taxonomic position. 16S rRNA gene sequence analysis, and morphological and chemotaxonomic properties showed that strain AR33 belongs to the genus Agromyces . Strain AR33 had peptidoglycan type B2γ and the major menaquinones were MK-11, MK-10 and MK-12. The main branched-chain fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. Strain AR33 showed catalase and oxidase activity and multiple heavy metal resistances to zinc, lead and cadmium. The DNA G+C content was 70.1 mol%. Levels of 16S rRNA gene sequence similarity with closely related recognized species of the genus Agromyces ranged between 98 and 99 %. However, DNA–DNA hybridization between strain AR33 and the type strains of three Agromyces species showed values lower than 42 % relatedness. Therefore, differential phenotypic characteristics together with DNA–DNA relatedness suggested that strain AR33 can be recognized as representing a distinct Agromyces species, for which the name Agromyces aureus sp. nov. is proposed. The type strain is AR33 (=DSM 101731=LMG 29235).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001260
2016-09-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3749.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001260&mimeType=html&fmt=ahah

References

  1. Akimov V. N., Evtushenko L. I.( 2012;). Genus IV. Agromyces. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn.,vol. 5 pp. 862–876. Edited by Goodfellow M., Kämpfer P., Busse H. J., Trujillo M. E., Suzuki K., Ludwig W., Whitman W. B.. New York:: Springer;.
    [Google Scholar]
  2. Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., Nikolenko S. I., Pham S. et al.( 2012;). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. . J Comput Biol 19: 455–477. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bligh E. G., Dyer W. J..( 1959;). A rapid method of total lipid extraction and purification. . Can J Biochem Physiol 37: 911–917. [CrossRef] [PubMed]
    [Google Scholar]
  4. Campisano A., Ometto L., Compant S., Pancher M., Antonielli L., Yousaf S., Varotto C., Anfora G., Pertot I. et al.( 2014;). Interkingdom transfer of the acne-causing agent, Propionibacterium acnes, from human to grapevine. . Mol Biol Evol 31: 1059–1065. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cappuccino J. G., Sherman N..( 2002;). Microbiology: a Laboratory Manual, , 6th edn.. San Francisco:: Benjamin Cummings;.
    [Google Scholar]
  6. Cashion P., Holder-Franklin M. A., McCully J., Franklin M..( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81: 461–466. [CrossRef] [PubMed]
    [Google Scholar]
  7. Castresana J..( 2000;). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. . Mol Biol Evol 17: 540–552. [CrossRef] [PubMed]
    [Google Scholar]
  8. Cowan S. T., Steel K. J..( 1965;). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  9. De Ley J., Cattoir H., Reynaerts A..( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12: 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  10. Dorofeeva L. V., Krausova V. I., Evtushenko L. I., Tiedje J. M..( 2003;). Agromyces albus sp. nov., isolated from a plant (Androsace sp.). . Int J Syst Evol Microbiol 53: 1435–1438. [CrossRef] [PubMed]
    [Google Scholar]
  11. Edgar R. C..( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32: 1792–1797. [CrossRef] [PubMed]
    [Google Scholar]
  12. Ferooz J., Letesson J. J..( 2010;). Morphological analysis of the sheathed flagellum of Brucella melitensis. . BMC Res Notes 3: 333. [CrossRef] [PubMed]
    [Google Scholar]
  13. García-Alcalde F., Okonechnikov K., Carbonell J., Cruz L. M., Götz S., Tarazona S., Dopazo J., Meyer T. F., Conesa A..( 2012;). Qualimap: evaluating next-generation sequencing alignment data. . Bioinformatics 28: 2678–2679. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gledhill W. E., Casida L. E..( 1969;). Predominant Catalase-negative Soil Bacteria. III. Agromyces, gen. n., Microorganisms Intermediary to Actinomyces and Nocardia. . Appl Microbiol 18: 340–349.[PubMed]
    [Google Scholar]
  15. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H.-N..( 1974;). Nocardia coeliaca, Nocardia autotrophica, and the Nocardin Strain. . Int J Syst Evol Microbiol 24: 54–63.
    [Google Scholar]
  16. Hamada M., Shibata C., Tamura T., Suzuki K..( 2014;). Agromyces marinus sp. nov., a novel actinobacterium isolated from sea sediment. . J Antibiot 67: 703–706. [CrossRef] [PubMed]
    [Google Scholar]
  17. Huss V. A., Festl H., Schleifer K. H..( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4: 184–192. [CrossRef] [PubMed]
    [Google Scholar]
  18. Jung S. Y., Lee S. Y., Oh T. K., Yoon J. H..( 2007;). Agromyces allii sp. nov., isolated from the rhizosphere of Allium victorialis var. platyphyllum. . Int J Syst Evol Microbiol 57: 588–593. [CrossRef] [PubMed]
    [Google Scholar]
  19. Jurado V., Groth I., Gonzalez J. M., Laiz L., Saiz-Jimenez C..( 2005a;). Agromyces salentinus sp. nov. and Agromyces neolithicus sp. nov. . Int J Syst Evol Microbiol 55: 153–157. [CrossRef] [PubMed]
    [Google Scholar]
  20. Jurado V., Groth I., Gonzalez J. M., Laiz L., Saiz-Jimenez C..( 2005b;). Agromyces subbeticus sp. nov., isolated from a cave in southern Spain. . Int J Syst Evol Microbiol 55: 1897–1901. [CrossRef] [PubMed]
    [Google Scholar]
  21. Jurado V., Groth I., Gonzalez J. M., Laiz L., Schuetze B., Saiz-Jimenez C..( 2005c;). Agromyces italicus sp. nov., Agromyces humatus sp. nov. and Agromyces lapidis sp. nov., isolated from Roman catacombs. . Int J Syst Evol Microbiol 55: 871–875. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kim M., Park S. C., Baek I., Chun J..( 2015;). Large-scale evaluation of experimentally determined DNA G+C contents with whole genome sequences of prokaryotes. . Syst Appl Microbiol 38: 79–83. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kuffner M., Puschenreiter M., Wieshammer G., Gorfer M., Sessitsch A..( 2008;). Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. . Plant and Soil 304: 35–44. [CrossRef]
    [Google Scholar]
  24. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E..( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. . Int J Syst Bacteriol 38: 358–361. [CrossRef]
    [Google Scholar]
  25. Lagesen K., Hallin P., Rødland E. A., Staerfeldt H. H., Rognes T., Ussery D. W..( 2007;). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. . Nucleic Acids Res 35: 3100–3108. [CrossRef] [PubMed]
    [Google Scholar]
  26. Lanyi B..( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19: 1–67.[CrossRef]
    [Google Scholar]
  27. Lee M., Ten L. N., Woo S. G., Park J..( 2011;). Agromyces soli sp. nov., isolated from farm soil. . Int J Syst Evol Microbiol 61: 1286–1292. [CrossRef] [PubMed]
    [Google Scholar]
  28. Miller L. T..( 1982;). A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. . J Clin Microbiol 16: 584–586.
    [Google Scholar]
  29. Rivas R., Trujillo M. E., Mateos P. F., Martínez-Molina E., Velázquez E..( 2004;). Agromyces ulmi sp. nov., a xylanolytic bacterium isolated from Ulmus nigra in Spain. . Int J Syst Evol Microbiol 54: 1987–1990. [CrossRef] [PubMed]
    [Google Scholar]
  30. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  31. Schleifer K. H..( 1985;). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18: 123–156.[CrossRef]
    [Google Scholar]
  32. Schleifer K. H., Kandler O..( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36: 407–477.[PubMed]
    [Google Scholar]
  33. Schneider C. A., Rasband W. S., Eliceiri K. W..( 2012;). NIH Image to ImageJ: 25 years of image analysis. . Nat Methods 9: 671–675. [CrossRef] [PubMed]
    [Google Scholar]
  34. Staneck J. L., Roberts G. D..( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. . Appl Microbiol 28: 226–231.[PubMed]
    [Google Scholar]
  35. Takeuchi M., Hatano K..( 2001;). Agromyces luteolus sp. nov., Agromyces rhizospherae sp. nov. and Agromyces bracchium sp. nov., from the mangrove rhizosphere. . Int J of Evol Microbiol 51: 1529–1537. [CrossRef]
    [Google Scholar]
  36. Tamura K., Nei M., Kumar S..( 2004;). Prospects for inferring very large phylogenies by using the neighbor-joining method. . Proc Natl Acad Sci U S A 101: 11030–11035. [CrossRef] [PubMed]
    [Google Scholar]
  37. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  38. Tindall B. J..( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13: 128–130. [CrossRef]
    [Google Scholar]
  39. Tindall B. J..( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66: 199–202. [CrossRef]
    [Google Scholar]
  40. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P..( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60: 249–266. [CrossRef] [PubMed]
    [Google Scholar]
  41. Tindall B. J., Sikorski J., Smibert R. M., Kreig N. R..( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, , 3rd edn., pp. 330–393 . Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M.. Washington DC:: L. R. Snyder ASM Press;.
    [Google Scholar]
  42. Wenzel W. W., Jockwer F..( 1999;). Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. . Environmental Pollution 104: 145–155. [CrossRef]
    [Google Scholar]
  43. Yoon J. H., Schumann P., Kang S. J., Park S., Oh T. K..( 2008;). Agromyces terreus sp. nov., isolated from soil. . Int J Syst Evol Microbiol 58: 1308–1312. [CrossRef] [PubMed]
    [Google Scholar]
  44. Zgurskaya H. I., Evtushenko L. I., Akimov V. N., Voyevoda H. V., Dobrovolskaya T. G., Lysak L. V., Kalakoutskii L. V..( 1992;). Emended description of the genus Agromyces and description of Agromyces cerinus subsp. cerinus sp. nov., subsp. nov., Agromyces cerinus subsp. nitratus sp. nov., subsp. nov., Agromyces fucosus subsp. fucosus sp. nov., subsp. nov., and Agromyces fucosus subsp. hippuratus sp. nov., subsp. nov. . IntJ Syst Bacteriol 42: 635–641. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001260
Loading
/content/journal/ijsem/10.1099/ijsem.0.001260
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error