1887

Abstract

A Gram-stain-positive, facultatively anaerobic, endospore-forming, irregular rod-shaped bacterium, designated DB13260, was isolated from tropical rainforest soil in Jianfengling Nature Reserve in Hainan, China. The isolate was found to grow with 0–4 % (w/v) NaCl, at 5–40 °C and pH 6.0–10.5, with an optimum of 0 % NaCl, 30–37 °C and pH 8.5–9.0, respectively. The predominant isoprenoid quinone was menaquinone 7 (MK-7), and the major fatty acids were anteiso-C, iso-C and C. The G+C content of the genomic DNA was 53.7 mol%. Analysis of the 16S rRNA gene sequence of strain DB13260 showed an affiliation of the strain with the genus , sharing 98.3 % and 97.8 % 16S rRNA gene sequence similarities with the closest relatives MH21 and W126, respectively. The DNA–DNA hybridization values between strain DB13260 and the two type strains were 60.4 % and 42.6 %, respectively. The combined phenotypic and DNA–DNA hybridization data supported the conclusion that strain DB13260 represents a novel species of the genus for which the name sp. nov. is proposed. The type strain is DB13260 (=CGMCC 1.12769=DSM 28014).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001258
2016-09-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3703.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001258&mimeType=html&fmt=ahah

References

  1. Akaracharanya A., Lorliam W., Tanasupawat S., Lee K. C., Lee J. S.. 2009; Paenibacillus cellulositrophicus sp. nov., a cellulolytic bacterium from Thai soil. Int J Syst Evol Microbiol59:2680–2684 [CrossRef][PubMed]
    [Google Scholar]
  2. Ash C., Priest F. G., Collins M. D.. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie Van Leeuwenhoek64:253–260 [CrossRef]
    [Google Scholar]
  3. Beneduzi A., Costa P. B., Parma M., Melo I. S., Bodanese-Zanettini M. H., Passaglia L. M.. 2010; Paenibacillus riograndensis sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Triticum aestivum. Int J Syst Evol Microbiol60:128–133 [CrossRef][PubMed]
    [Google Scholar]
  4. Berge O., Guinebretière M. H., Achouak W., Normand P., Heulin T.. 2002; Paenibacillus graminis sp. nov. andPaenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol52:607–616 [CrossRef][PubMed]
    [Google Scholar]
  5. Christensen H., Angen O., Mutters R., Olsen J. E., Bisgaard M.. 2000; DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol50:1095–1102 [CrossRef][PubMed]
    [Google Scholar]
  6. Dong X. Z., Cai M. Y.. 2001; Common bacterial system identification manual354–357 Beijing: Science Press (in Chinese);
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in micro-dilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229 [CrossRef]
    [Google Scholar]
  8. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  9. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  10. Fitch W. M.. 1972; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  11. Flores-Félix J. D., Mulas R., Ramírez-Bahena M. H., Cuesta M. J., Rivas R., Brañas J., Mulas D., González-Andrés F., Peix A., Velázquez E.. 2014; Fontibacillus phaseoli sp. nov. isolated from Phaseolus vulgaris nodules. Antonie Van Leeuwenhoek105:23–28 [CrossRef][PubMed]
    [Google Scholar]
  12. Glaeser S. P., Falsen E., Busse H. J., Kämpfer P.. 2013; Paenibacillus vulneris sp. nov., isolated from a necrotic wound. Int J Syst Evol Microbiol63:777–782 [CrossRef][PubMed]
    [Google Scholar]
  13. Horn M. A., Ihssen J., Matthies C., Schramm A., Acker G., Drake H. L.. 2005; Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa. Int J Syst Evol Microbiol55:1255–1265 [CrossRef][PubMed]
    [Google Scholar]
  14. Jin H. J., Lv J., Chen S. F.. 2011; Paenibacillus sophorae sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sophora japonica. Int J Syst Evol Microbiol61:767–771 [CrossRef][PubMed]
    [Google Scholar]
  15. Kämpfer P., Falsen E., Lodders N., Martin K., Kassmannhuber J., Busse H. J.. 2012; Paenibacillus chartarius sp. nov., isolated from a paper mill. Int J Syst Evol Microbiol62:1342–1347 [CrossRef][PubMed]
    [Google Scholar]
  16. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  17. Komagata K., Suzuki K. I.. 1987; Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol19:161–207[CrossRef]
    [Google Scholar]
  18. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine. T. E.. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol38:358–361 [CrossRef]
    [Google Scholar]
  19. Lee J., Shin N. R., Jung M. J., Roh S. W., Kim M. S., Lee J. S., Lee K. C., Kim Y. O., Bae J. W.. 2013; Paenibacillus oceanisediminis sp. nov. isolated from marine sediment. Int J Syst Evol Microbiol63:428–434 [CrossRef][PubMed]
    [Google Scholar]
  20. Ma Y., Xia Z., Liu X., Chen S.. 2007a; Paenibacillus sabinae sp. nov., a nitrogen-fixing species isolated from the rhizosphere soils of shrubs. Int J Syst Evol Microbiol57:6–11 [CrossRef]
    [Google Scholar]
  21. Ma Y., Zhang J., Chen S.. 2007b; Paenibacillus zanthoxyli sp. nov., a novel nitrogen-fixing species isolated from the rhizosphere of Zanthoxylum simulans. Int J Syst Evol Microbiol57:873–877 [CrossRef][PubMed]
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  23. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  24. Moon J. C., Jung Y. J., Jung J. H., Jung H. S., Cheong Y. R., Jeon C. O., Lee K. O., Lee S. Y.. 2011; Paenibacillus sacheonensis sp. nov., a xylanolytic and cellulolytic bacterium isolated from tidal flat sediment. Int J Syst Evol Microbiol61:2753–2757 [CrossRef][PubMed]
    [Google Scholar]
  25. Park M. K., Traiwan J., Jung M. Y., Nam Y. S., Jeong J. H., Kim W.. 2011; Paenibacillus chungangensis sp. nov., isolated from a tidal-flat sediment. Int J Syst Evol Microbiol61:281–285 [CrossRef][PubMed]
    [Google Scholar]
  26. Ruan J. S.. 2006; A rapid determination method for phosphate lipids. Microbiology37:190–193
    [Google Scholar]
  27. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  28. Schumann P.. 2011; Peptidoglycan structure. Methods Microbiol38:101–129[CrossRef]
    [Google Scholar]
  29. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  31. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464[CrossRef]
    [Google Scholar]
  32. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703[PubMed]
    [Google Scholar]
  33. Xiang W., Wang G., Wang Y., Yao R., Zhang F., Wang R., Wang D., Zheng S.. 2014; Paenibacillus selenii sp. nov., isolated from selenium mineral soil. Int J Syst Evol Microbiol64:2662–2667 [CrossRef][PubMed]
    [Google Scholar]
  34. Xu L. H., Li W. J., Liu Z. H., Jiang C. L.. 2007; Actinomycete taxonomy: principles, methods and practices Beijing: Science Press;
    [Google Scholar]
  35. Yao R., Wang R., Wang D., Su J., Zheng S., Wang G.. 2014; Paenibacillus selenitireducens sp. nov., a selenite-reducing bacterium isolated from a selenium mineral soil. Int J Syst Evol Microbiol64:805–811 [CrossRef][PubMed]
    [Google Scholar]
  36. Yoon J. H., Kang S. J., Yeo S. H., Oh T. K.. 2005; Paenibacillus alkaliterrae sp. nov., isolated from an alkaline soil in Korea. Int J Syst Evol Microbiol55:2339–2344 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001258
Loading
/content/journal/ijsem/10.1099/ijsem.0.001258
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error