1887

Abstract

A novel Gram-stain-positive, rod shaped, motile bacterium, designated strain PU1, was isolated from a sediment sample collected from a drainage near hostel of Palamuru University, Mahabubnagar district, T.S, India (16°43′23″N 77°58′49″E). Cells of strain PU1 are positive for catalase, oxidase, phosphatase, lipase and urease, and negative for gelatinase, amylase, protease, cellulase, lysine decarboxylase and ornithine decarboxylase. The fatty acids were dominated by saturated fatty acids (82.7 %), with a high abundance of iso-C (48.8 %), anteiso-C (7.3 %), iso-C (11.9 %), Cω7 alcohol (11.8 %) and iso-C (5.3 %). Strain PU1 contained MK-8 as the major respiratory quinone and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine make up the phospholipid composition. The cell-wall peptidoglycan contains -diaminopimelic acid as the diamino acid and cell-wall sugars are -glucose and -galactose. 16S rRNA gene sequence analysis indicated and , members of family within the phylum , are the closest related species with 16S rRNA gene sequence similarities of 99 %. Other members of the family had sequence similarities of 99 %, and DNA–DNA relatedness values between strain PU1 and MW 10, JC16 were 38 and 32 % respectively. The G+C content of DNA of strain PU1 is 48.5 mol%. Based on the above-mentioned phenotypic and phylogenetic characteristics, strain PU1 represents a novel species of the genus for which the name sp. nov. is proposed. The type strain is PU1(=CCUG 59101=JCM 16712=KCTC 13722=NBRC106750).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001256
2016-09-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3731.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001256&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef]
    [Google Scholar]
  2. Arora P. K., Chauhan A., Pant B., Korpole S., Mayilraj S., Jain R. K.. 2011; Chryseomicrobium imtechense gen. nov., sp. nov., a new member of the family Planococcaceae. Int J Syst Evol Microbiol61:1859–1864 [CrossRef][PubMed]
    [Google Scholar]
  3. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E., sskin D. E.. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  4. Deng S. K., Ye X. M., Chu C. W., Jiang J., He J., Zhang J., Li S. P.. 2014; Chryseomicrobium aureum sp. nov., a bacterium isolated from activated sludge. Int J Syst Evol Microbiol64:2682–2687 [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. 1993; PHYLIP (phylogeny inference package). 3.5.1. University of Washington, Seattle, USA: Department of Genome Sciences;
  6. Groth I., Schumann P., Rainey F. A., Martin K., Schuetze B., Augsten K.. 1997; Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol47:1129–1133 [CrossRef][PubMed]
    [Google Scholar]
  7. Guindon S., Gascuel O.. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol52:696–704 [CrossRef][PubMed]
    [Google Scholar]
  8. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  9. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  10. Komagata K., Suzuki K.. 1987; Lipid and cell wall analysis in bacterial systematics. Methods Microbiol19:161–206[CrossRef]
    [Google Scholar]
  11. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp115–175 Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  12. Lanyi B.. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol19:1–67[CrossRef]
    [Google Scholar]
  13. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol3:208–IN1 [CrossRef]
    [Google Scholar]
  14. Minnikin D. E., Alshamaony L., Goodfellow M.. 1975; Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J Gen Microbiol88:200–204 [CrossRef][PubMed]
    [Google Scholar]
  15. Raj P. S., Sasikala C., Ramaprasad E. V. V., Subhash Y., Busse H. J., Schumann P., Ramana C. V.. 2013; Chryseomicrobium amylolyticum sp. nov., isolated from a semi-arid tropical soil, and emended descriptions of the genus Chryseomicrobium and Chryseomicrobium imtechense. Int J Syst Evol Microbiol63:2612–2617 [CrossRef][PubMed]
    [Google Scholar]
  16. Rosenthal R. S., Dziarski R.. 1994; Isolation of peptidoglycan and soluble peptidoglycan fragments. Methods Enzymol235:253–285[PubMed][CrossRef]
    [Google Scholar]
  17. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  18. Schleifer K. H., Kandler O.. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev36:407–477[PubMed]
    [Google Scholar]
  19. Sly L. I, Blackall L. L., Kraat P. C., Tian-Shen T., Sangkhobol V.. 1986; The use of second derivative plots for the determination of mol% guanine plus cytosine of DNA by the thermal denaturation method. J Microbiol Methods5:139–156[CrossRef]
    [Google Scholar]
  20. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  22. Tourova T. P., Antonov A. S.. 1988; Identification of microorganisms by rapid DNA–DNA hybridization. Methods Microbiol19:333–355[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001256
Loading
/content/journal/ijsem/10.1099/ijsem.0.001256
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error