1887

Abstract

From our recent survey of non-pigmented rapidly growing mycobacteria in the Parisian water system, three groups of isolates (taxons 1–3) corresponding to possible novel species were selected for taxonomic study. The three taxa each formed creamy white, rough colonies, had an optimal growth temperature of 30 °C, hydrolyzed Tween 80, were catalase-positive at 22 °C and expressed arylsulfatase activity. All three were susceptible to amikacin, ciprofloxacin and tigecycline. The three taxa produced specific sets of mycolic acids, including one family that has never previously been described, as determined by thin layer chromatography and nuclear magnetic resonance. The partial rpoB sequences (723 bp) showed 4–6 % divergence from each other and more than 5 % differences from the most similar species. Partial 16S rRNA gene sequences showed 99 % identity within each species. The most similar sequences for 16S rRNA genes (98–99 % identity over 1444–1461 bp) were found in the Mycobacterium fortuitum group, Mycobacterium septicum and Mycobacterium farcinogenes . The three taxa formed a new clade (bootstrap value, 99 %) on trees reconstructed from concatenated partial 16S rRNA, hsp65 and rpoB sequences. The above results led us to propose three novel species for the three groups of isolates, namely Mycobacterium lutetiense sp. nov. [type strain 071=ParisRGMnew_1 (CIP 110656=DSM 46713)], Mycobacterium montmartrense sp. nov. [type strain 196=ParisRGMnew_2 (CIP 110655=DSM 46714)] and Mycobacteriu marcueilense sp. nov. [type strain of 269=ParisRGMnew_3 (CIP 110654=DSM 46715)].

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001253
2016-09-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3694.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001253&mimeType=html&fmt=ahah

References

  1. Adékambi T., Colson P., Drancourt M..( 2003;). rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. . J Clin Microbiol 41: 5699–5708. [CrossRef] [PubMed]
    [Google Scholar]
  2. Adékambi T., Berger P., Raoult D., Drancourt M..( 2006;). rpoB gene sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov., Mycobacterium phocaicum sp. nov. and Mycobacterium aubagnense sp. nov. . Int J Syst Evol Microbiol 56: 133–143. [CrossRef] [PubMed]
    [Google Scholar]
  3. Alahari A., Trivelli X., Guérardel Y., Dover L. G., Besra G. S., Sacchettini J. C., Reynolds R. C., Coxon G. D., Kremer L..( 2007;). Thiacetazone, an antitubercular drug that inhibits cyclopropanation of cell wall mycolic acids in mycobacteria. . PLoS One 2: e1343. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bland C. S., Ireland J. M., Lozano E., Alvarez M. E., Primm T. P..( 2005;). Mycobacterial ecology of the Rio Grande. . Appl Environ Microbiol 71: 5719–5727. [CrossRef] [PubMed]
    [Google Scholar]
  5. Brown-Elliott B. A., Wallace R. J.( 2002;). Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. . Clin Microbiol Rev 15: 716–746. [CrossRef] [PubMed]
    [Google Scholar]
  6. Brown-Elliott B. A., Nash K. A., Wallace R. J..( 2012;). Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. . Clin Microbiol Rev 25: 545–582. [CrossRef] [PubMed]
    [Google Scholar]
  7. Covert T. C., Rodgers M. R., Reyes A. L., Stelma G. N..( 1999;). Occurrence of nontuberculous mycobacteria in environmental samples. . Appl Environ Microbiol 65: 2492–2496.[PubMed]
    [Google Scholar]
  8. Devulder G., Pérouse de Montclos M., Flandrois J. P..( 2005;). A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. . Int J Syst Evol Microbiol 55: 293–302. [CrossRef] [PubMed]
    [Google Scholar]
  9. Dubrou S., Konjek J., Macheras E., Welté B., Guidicelli L., Chignon E., Joyeux M., Gaillard J. L., Heym B. et al.( 2013;). Diversity, community composition, and dynamics of nonpigmented and late-pigmenting rapidly growing mycobacteria in an urban tap water production and distribution system. . Appl Environ Microbiol 79: 5498–5507. [CrossRef] [PubMed]
    [Google Scholar]
  10. Falkinham J. O. III.( 2009;). Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. . J Appl Microbiol 107: 356–367. [CrossRef] [PubMed]
    [Google Scholar]
  11. Felsenstein J..( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39: 783–791. [CrossRef]
    [Google Scholar]
  12. Kent P. T., Kubica G. P..( 1985;). Public Health Mycobacteriology: A Guide for the Level III Laboratory. Atlanta, GA, USA:: US Department of Health and Human Services, Public Health Service, Centers for Disease Control;.
    [Google Scholar]
  13. Kimura M..( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16: 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kremer L., Douglas J. D., Baulard A. R., Morehouse C., Guy M. R., Alland D., Dover L. G., Lakey J. H., Jacobs W. R. et al.( 2000;). Thiolactomycin and related analogues as novel anti-mycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis. . J Biol Chem 275: 16857–16864. [CrossRef] [PubMed]
    [Google Scholar]
  15. Leao S. C., Tortoli E., Viana-Niero C., Ueki S. Y. M., Lima K. V., Lopes M. L., Yubero J., Menendez M. C., Garcia M. J..( 2009;). Characterization of mycobacteria from a major Brazilian outbreak suggests that revision of the taxonomic status of members of theMycobacterium chelonaeM. abscessus group is needed. . J Clin Microbio 47: 2691–2698. [CrossRef]
    [Google Scholar]
  16. Macheras E., Roux A. L., Ripoll F., Sivadon-Tardy V., Gutierrez C., Gaillard J. L., Heym B..( 2009;). Inaccuracy of single-target sequencing for discriminating species of the Mycobacterium abscessus group. . J Clin Microbiol 47: 2596–2600. [CrossRef] [PubMed]
    [Google Scholar]
  17. Primm T. P., Lucero C. A., Falkinham J. O..( 2004;). Health impacts of environmental mycobacteria. . Clin Microbiol Rev 17: 98–106. [CrossRef] [PubMed]
    [Google Scholar]
  18. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  19. September S. M., Brözel V. S., Venter S. N..( 2004;). Diversity of nontuberculoid Mycobacterium species in biofilms of urban and semiurban drinking water distribution systems. . Appl Environ Microbiol 70: 7571–7573. [CrossRef] [PubMed]
    [Google Scholar]
  20. Sermet-Gaudelus I., Le Bourgeois M., Pierre-Audigier C., Offredo C., Guillemot D., Halley S., Akoua-Koffi C., Vincent V., Sivadon-Tardy V. et al.( 2003;). Mycobacterium abscessus and children with cystic fibrosis. . Emerg Infect Dis 9: 1587–1591. [CrossRef] [PubMed]
    [Google Scholar]
  21. Stahl D. A., Urbance J. W..( 1990;). The division between fast- and slow-growing species corresponds to natural relationships among the mycobacteria. . J Bact 172: 116–124.[PubMed]
    [Google Scholar]
  22. Stein G. E., Craig W. A..( 2006;). Tigecycline: a critical analysis. . Clin Infect Dis 43: 518–524. [CrossRef] [PubMed]
    [Google Scholar]
  23. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S..( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28: 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  24. van Ingen J., Blaak H., de Beer J., de Roda Husman A. M., van Soolingen D..( 2010;). Rapidly growing nontuberculous mycobacteria cultured from home tap and shower water. . Appl Environ Microbiol 76: 6017–6019. [CrossRef] [PubMed]
    [Google Scholar]
  25. Wallace R. J. Jr, Brown B. A., Griffith D. E..( 1998;). Nosocomial outbreaks/pseudo-outbreaks caused by nontuberculous mycobacteria. . Annu Rev Microbiol 52: 453–490. [CrossRef] [PubMed]
    [Google Scholar]
  26. Woods G. L., Bergmann J. S., Witebsky F. G., Fahle G. A., Boulet B., Plaunt M., Brown B. A., Wallace R. J., Wanger A..( 2000;). Multisite reproducibility of Etest for susceptibility testing of Mycobacterium abscessus, Mycobacterium chelonae, and Mycobacterium fortuitum. . J Clin Microbiol 38: 656–661.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001253
Loading
/content/journal/ijsem/10.1099/ijsem.0.001253
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error