1887

Abstract

A novel bacterial strain, designated strain BS27, was isolated from mushroom compost and subjected to a taxonomic study using a polyphasic approach. Colonies of BS27 were milky-white, circular with regular fringes and opaque. Cells were short rods, 0.3–0.5 µm wide and 1.2–2.0 µm long. Phylogenetic study based on the 16S rRNA gene sequence placed BS27 in a distinct lineage in the family , sharing 90.1–90.9 % sequence similarity with members of the closely related genera , , , and . The novel isolate showed the highest sequence similarities with the members of the genus . BS27 contained MK-7 as predominant quinone, and iso-C, iso-C 3-OH, Cω7 and/or Cω6 (summed feature 3) and iso-CI and/or anteiso-CB (summed feature 4) as major fatty acids. The DNA G+C content was 53.0 mol%. The major polar lipids of BS27 were phosphatidylethanolamine (PE) and five unidentified polar lipids (L1, L2, L5, L6 and L7). The results of physiological and biochemical tests allowed phenotypic differentiation of BS27 from its closest phylogenetic neighbours. On the basis of the evidence of this polyphasic study, isolate BS27 represents a novel genus and species in the family for which the name gen. nov., sp. nov. is proposed. The type strain is BS27 (=KACC 18745=JCM 17664).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001252
2016-09-01
2020-11-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3681.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001252&mimeType=html&fmt=ahah

References

  1. Albert R. A., Zitomer D., Dollhopf M., Schauer-Gimenez A. E., Struble C., King K., Son S., Langer S., Busse H. J.. 2014; Proposal of Vibrionimonas magnilacihabitans gen. nov., sp. nov., a curved Gram-stain-negative bacterium isolated from lake water. Int J Syst Evol Microbiol64:613–620 [CrossRef][PubMed]
    [Google Scholar]
  2. Anders H., Dunfield P. F., Lagutin K., Houghton K. M., Power J. F., Mackenzie A. D., Vyssotski M., Ryan J. L., Hanssen E. G. et al. 2014; Thermoflavifilum aggregans gen. nov., sp. nov., a thermophilic and slightly halophilic filamentous bacterium from the phylum Bacteroidetes. Int J Syst Evol Microbiol64:1264–1270 [CrossRef][PubMed]
    [Google Scholar]
  3. Eder W., Peplies J. R., Wanner G., Frühling A., Verbarg S.. 2015; Hydrobacter penzbergensis gen. nov., sp. nov., isolated from purified water. Int J Syst Evol Microbiol65:920–926 [CrossRef][PubMed]
    [Google Scholar]
  4. Fautz E., Reichenbach H.. 1980; A simple test for flexirubin-type pigments. FEMS Microbiol Letters8:87–89 [CrossRef]
    [Google Scholar]
  5. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. 1985; Confidence limit on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  7. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  8. Glaeser S. P., Galatis H., Martin K., Kämpfer P.. 2013; Niabella hirudinis and Niabella drilacis sp. nov., isolated from the medicinal leech Hirudoverbana. Int J Syst Evol Microbiol63:3487–3493 [CrossRef][PubMed]
    [Google Scholar]
  9. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  10. Hanada S., Tamaki H., Nakamura K., Kamagata Y.. 2014; Crenotalea thermophila gen. nov., sp. nov., a member of the family Chitinophagaceae isolated from a hot spring. Int J Syst Evol Microbiol64:1359–1364 [CrossRef][PubMed]
    [Google Scholar]
  11. Hiraishi A., Ueda Y., Ishihara J., Mori T.. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol42:457–469 [CrossRef]
    [Google Scholar]
  12. Kämpfer P., Young C. C., Sridhar K. R., Arun A. B., Lai W. A., Shen F. T., Rekha P. D., Sridhar K. R., Arun A. B.. 2006; Transfer of [Flexibacter] sancti, [Flexibacter] filiformis, [Flexibacter] japonensis and [Cytophaga] arvensicola to the genus Chitinophaga and description of Chitinophaga skermanii sp. nov. Int J Syst Evol Microbiol56:2223–2228 [CrossRef][PubMed]
    [Google Scholar]
  13. Kämpfer P., Lodders N., Falsen E.. 2011; Hydrotalea flava gen. nov., sp. nov., a new member of the phylum Bacteroidetes and allocation of the genera Chitinophaga, Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Parasegetibacter, Terrimonas, Ferruginibacter, Filimonas and Hydrotalea to the family Chitinophagaceae fam. nov. Int J Syst Evol Microbiol61:518–523 [CrossRef][PubMed]
    [Google Scholar]
  14. Kang J. Y., Chun J., Seo J. W., Kim C. H., Jahng K. Y.. 2015; Parasediminibacterium paludis gen. nov., sp. nov., isolated from wetland. Int J Syst Evol Microbiol65:2209–2214 [CrossRef]
    [Google Scholar]
  15. Kang H., Kim H., Joung Y., Joh K.. 2016; Parasediminibacterium paludis gen. nov., sp. nov., isolated from wetland. Int J Syst Evol Microbiol66:326–331 [CrossRef][PubMed]
    [Google Scholar]
  16. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  17. Kim J. K., Kang M. S., Park S. C., Kim K. M., Choi K., Yoon M. H., Im W. T.. 2015; Sphingosinicella ginsenosidimutans sp. nov., with ginsenoside converting activity. J Microbiol53:435–441 [CrossRef][PubMed]
    [Google Scholar]
  18. Kimura M.. 1983; The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;[CrossRef]
    [Google Scholar]
  19. Leandro T., França L., Nobre M. F., Rainey F. A., Da Costa M. S.. 2013; Heliimonas saccharivorans gen. nov., sp. nov., a member of the family Chitinophagaceae isolated from a mineral water aquifer, and emended description of Filimonas lacunae. Int J Syst Evol Microbiol63:3793–3799 [CrossRef][PubMed]
    [Google Scholar]
  20. Lee D. G., Park J. M., Kang H., Hong S. Y., Lee K. R., Chang H. B., Trujillo M. E.. 2013; Asinibacterium lactis gen. nov., sp. nov., a member of the family Chitinophagaceae, isolated from donkey (Equus asinus) milk. Int J Syst Evol Microbiol63:3180–3185 [CrossRef][PubMed]
    [Google Scholar]
  21. Madhaiyan M., Poonguzhali S., Senthilkumar M., Pragatheswari D., Lee J. S., Lee K. C.. 2015; Arachidicoccus rhizosphaerae gen. nov., sp. nov., a plant-growth-promoting bacterium in the family Chitinophagaceae isolated from rhizosphere soil. Int J Syst Evol Microbiol65:578–586 [CrossRef][PubMed]
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  23. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  24. Moore D. D., Dowhan D.. 1995; Preparation and analysis of DNA. In Current Protocols in Molecular Biology , pp.2–11 Edited by Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A. B., Struhl K.. New York: Wiley;
    [Google Scholar]
  25. Qu J. H., Yuan H. L., Yang J. S., Li H. F., Chen N.. 2009; Lacibacter cauensis gen. nov., sp. nov., a novel member of the phylum Bacteroidetes isolated from sediment of a eutrophic lake. Int J Syst Evol Microbiol59:1153–1157 [CrossRef][PubMed]
    [Google Scholar]
  26. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  27. Sangkhobol V., Skerman V. B. D.. 1981; Chitinophaga, a new genus of chitinolytic myxobacteria. Int J Syst Bacteriol31:285–293 [CrossRef]
    [Google Scholar]
  28. Sasser M.. 1990; Identification of bacteria through fatty acid analysis. In Methods in Phytobacteriology pp.199–204 Edited by Klement Z., Rudolph K., Sands D. C.. Budapest: Akademiai Kaido;
    [Google Scholar]
  29. Siddiqi M. Z., Im W. T.. 2016a; Pseudobacter ginsenosidimutans gen. nov., sp. nov., isolated from ginseng cultivating soil. Int J Syst Evol Microbiol in press [CrossRef]
    [Google Scholar]
  30. Siddiqi M. Z., Im W. T.. 2016b; Niabella aquatica sp. nov., isolated from lake water. Int J Syst Evol Microbiol in press [CrossRef]
    [Google Scholar]
  31. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology , pp.607–655 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  32. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [CrossRef]
    [Google Scholar]
  33. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  34. Wang Y., Cai F., Tang Y., Dai J., Qi H., Rahman E., Peng F., Fang C.. 2011; Flavitalea populi gen. nov., sp. nov., isolated from soil of a Euphrates poplar (Populus euphratica) forest. Int J Syst Evol Microbiol61:1554–1560 [CrossRef][PubMed]
    [Google Scholar]
  35. Wang Y. X., Liu J. H., Xiao W., Zhang X. X., Li Y. Q., Lai Y. H., Ji K. Y., Wen M. L., Cui X. L.. 2012; Fodinibius salinus gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt mine. Int J Syst Evol Microbiol62:390–396 [CrossRef][PubMed]
    [Google Scholar]
  36. Wang Y., Liu J. H., Xiao W., Ma X. L., Lai Y. H., Li Z. Y., Ji K. Y., Wen M. L., Cui X. L.. 2013; Aliifodinibius roseus gen. nov., sp. nov., and Aliifodinibius sediminis sp. nov., two moderately halophilic bacteria isolated from salt mine samples. Int J Syst Evol Microbiol63:2907–2913 [CrossRef][PubMed]
    [Google Scholar]
  37. Weon H. Y., Kim B. Y., Yoo S. H., Lee S. Y., Kwon S. W., Go S. J., Stackebrandt E.. 2006; Niastella koreensis gen. nov., sp. nov. and Niastella yeongjuensis sp. nov., novel members of the phylum Bacteroidetes, isolated from soil cultivated with Korean ginseng. Int J Syst Evol Microbiol56:1777–1782 [CrossRef][PubMed]
    [Google Scholar]
  38. Yoon M. H., Im W. T.. 2007; Flavisolibacter ginsengiterrae gen. nov., sp. nov. and Flavisolibacter ginsengisoli sp. nov., isolated from ginseng cultivating soil. Int J Syst Evol Microbiol57:1834–1839 [CrossRef][PubMed]
    [Google Scholar]
  39. Zhao R., Chen X. Y., Li X. D., Tian Y., Kong B. H., Chen Z. L., Li Y. H.. 2014; Cnuella takakiae gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from Takakia lepidozioides. Int J Syst Evol Microbiol64:607–612 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001252
Loading
/content/journal/ijsem/10.1099/ijsem.0.001252
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error