1887

Abstract

A Gram-staining-negative, aerobic, yellow–orange-pigmented, rod-shaped bacterium designated D-24 was isolated from seawater from sandy shoreline in Johor, Malaysia. The 16S rRNA gene sequence analysis revealed that strain D-24 is affiliated with the genus . It shared more than 96 % sequence similarity with the types of some of the validly published species of the genus: KMM 3516 (99.5 %), RSSK-12 (97.3 %), CC-CZW007 (96.9 %), VBW088 (96.7 %) and JCM 15496 (96.3 %). DNA–DNA hybridization and genome-based analysis of average nucleotide identity (ANI) of strain D-24 versus KMM 3516 exhibited values of 35.9±0.14 % and 89.26 %, respectively. Strain D-24 showed an even lower ANI value of 80.88 % with RSSK-12. The major menaquinone of strain D-24 was MK-6, and the predominant fatty acids were iso-C and iso-C 3-OH. Strain D-24 contained major amounts of phosphatidylethanolamine, two lipids and two aminolipids, and a phosphoglycolipid that was different to that of other species of the genus . The genomic DNA G+C content was 40.6 mol%. On the basis of phenotypic properties, DNA–DNA relatedness, ANI value and chemotaxonomic analyses, strain D-24 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is D-24 (=KCTC 42708=DSM 101732).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001248
2016-09-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3662.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001248&mimeType=html&fmt=ahah

References

  1. Bowman J. P.. 2000; Description ofCellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol50:1861–1868 [CrossRef][PubMed]
    [Google Scholar]
  2. Claus D.. 1992; A standardized Gram staining procedure. World J Microbiol Biotechnol8:451–452 [CrossRef][PubMed]
    [Google Scholar]
  3. De Ley J., Cattoir H., Reynaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evol39:783–791 [CrossRef]
    [Google Scholar]
  6. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. 2007; DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  7. Huss V. A., Festl H., Schleifer K. H.. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  8. Kim B. S., Kim O. S., Moon E. Y., Chun J.. 2010; Vitellibacter aestuarii sp. nov., isolated from tidal-flat sediment, and an emended description of the genus Vitellibacter. Int J Syst Evol Microbiol60:1989–1992 [CrossRef][PubMed]
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  10. Kim M., Oh H. S., Park S. C., Chun J.. 2014; Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  11. Konstantinidis K. T., Tiedje J. M.. 2005; Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A102:2567–2572 [CrossRef][PubMed]
    [Google Scholar]
  12. Lane D.. 1991; 16S-23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp.125–175 Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  13. Lin S. Y., Hameed A., Wen C. Z., Liu Y. C., Hsu Y. H., Shen F. T., Lai W. A., Young C. C.. 2015; Vitellibacter echinoideorum sp. nov., isolated from a sea urchin (Tripneustes gratilla). Int J Syst Evol Microbiol65:2320–2325 [CrossRef][PubMed]
    [Google Scholar]
  14. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol3:208–IN1 [CrossRef]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Evol Microbiol39:159–167 [CrossRef]
    [Google Scholar]
  16. Nedashkovskaya O. I., Suzuki M., Vysotskii M. V, Mikhailov V. V.. 2003; Vitellibacter vladivostokensis gen. nov., sp. nov., a new member of the phylum Cytophaga-Flavobacterium-Bacteroides. Int J Syst Evol Microbiol53:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  17. Paisley R.. 1996; MIS Whole Cell Fatty Acid Analysis by Gas Chromatography Training Manual Newark, DE: MIDI;
    [Google Scholar]
  18. Park S., Lee K. C., Bae K. S., Yoon J. H.. 2014; Vitellibacter soesokkakensis sp. nov., isolated from the junction between the ocean and a freshwater spring and emended description of the genus Vitellibacter. Int J Syst Evol Microbiol64:588–593 [CrossRef][PubMed]
    [Google Scholar]
  19. Rajasabapathy R., Mohandass C., Yoon J. H., Dastager S. G., Liu Q., Khieu T. N., Son C. K., Li W. J., Colaço A.. 2015; Vitellibacter nionensis sp. nov., isolated from a shallow water hydrothermal vent. Int J Syst Evol Microbiol65:692–697 [CrossRef][PubMed]
    [Google Scholar]
  20. Richter M., Rosselló-Móra R.. 2009; Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  21. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  22. Smibert R., Krieg N.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp.617–622 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  23. Tamaoka J., Komagata K.. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett25:125–128 [CrossRef]
    [Google Scholar]
  24. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  25. Thevarajoo S., Selvaratnam C., Chan K. G., Goh K. M., Chong C. S.. 2015; Draft genome sequence of Vitellibacter vladivostokensis KMM 3516(T): a protease-producing bacterium. Mar Genomics23:49–50 [CrossRef][PubMed]
    [Google Scholar]
  26. Tindall B. J.. 1990; Lipid composition of Halobacterium lacusprofundi. FEMS MicrobiolLett66:199–202 [CrossRef]
    [Google Scholar]
  27. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R.. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology, 3rd edn. pp.330–393 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001248
Loading
/content/journal/ijsem/10.1099/ijsem.0.001248
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error