1887

Abstract

A diversity study on the presence of strains representing the genus in nodules collected from Cañizal (Spain) has provided evidence of the high number of isolates that might represent novel species. In the present work, we have characterized three of these isolates: GUI23, GUI43 and GUI63. Phenotypic and genotypic analyses confirmed that all strains represent novel species of the genus with the following proposed names: sp. nov., type strain GUI23 (=CECT 9022=DSM 101692), sp. nov., type strain GUI43 (=CECT 9020=DSM 101694), and sp. nov., type strain GUI63 (=CECT 9019=DSM 101695).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001231
2016-09-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3509.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001231&mimeType=html&fmt=ahah

References

  1. Carro L., Pukall R., Spröer C., Kroppenstedt R. M., Trujillo M. E. 2012a; Micromonospora cremea sp. nov. and Micromonospora zamorensis sp. nov., isolated from the rhizosphere of Pisum sativum . Int J Syst Evol Microbiol 62:2971–2977 [View Article][PubMed]
    [Google Scholar]
  2. Carro L., Spröer C., Alonso P., Trujillo M. E. 2012b; Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. Syst Appl Microbiol 35:73–80 [View Article][PubMed]
    [Google Scholar]
  3. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  4. Jones K. L. 1949; Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145[PubMed]
    [Google Scholar]
  5. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  6. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. In Methods in Enzymology pp 195–206 USA: Academic Press;
    [Google Scholar]
  7. Ørskov J. 1923 Investigations Into the Morphology of the Ray Fungi Copenhagen: Levin and Munksgaard;
    [Google Scholar]
  8. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  9. Shen Y., Zhang Y., Liu C., Wang X., Zhao J., Jia F., Yang L., Yang D., Xiang W. 2014; Micromonospora zeae sp. nov., a novel endophytic actinomycete isolated from corn root (Zea mays L.). J Antibiot 67:739–743 [View Article][PubMed]
    [Google Scholar]
  10. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [View Article]
    [Google Scholar]
  11. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  12. Trujillo M. E., Fernández-Molinero C., Velázquez E., Kroppenstedt R. M., Schumann P., Mateos P. F., Martínez-Molina E. 2005; Micromonospora mirobrigensis sp. nov. Int J Syst Evol Microbiol 55:877–880 [View Article][PubMed]
    [Google Scholar]
  13. Trujillo M. E., Kroppenstedt R. M., Schumann P., Carro L., Martínez-Molina E. 2006; Micromonospora coriariae sp. nov., isolated from root nodules of Coriaria myrtifolia . Int J Syst Evol Microbiol 56:2381–2385 [View Article][PubMed]
    [Google Scholar]
  14. Trujillo M. E., Kroppenstedt R. M., Fernández-Molinero C., Schumann P., Martínez-Molina E. 2007; Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius . Int J Syst Evol Microbiol 57:2799–2804 [View Article][PubMed]
    [Google Scholar]
  15. Vincent J. M. 1970; The cultivation, isolation and maintenance of rhizobia. In A Manual for the Practical Study of the Root-Nodule Bacteria pp. 1–13 Edited by Vincent J. M. Oxford: Blackwell Scientific;
    [Google Scholar]
  16. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37:463–464 [CrossRef]
    [Google Scholar]
  17. Williams S. T., Goodfellow M., Alderson G., Wellington E. M., Sneath P. H., Sackin M. J. 1983; Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813 [View Article][PubMed]
    [Google Scholar]
  18. Zhang Y., Liu H., Zhang X., Wang S., Liu C., Yu C., Wang X., Xiang W. 2014; Micromonospora violae sp. nov., isolated from a root ofViola philippica Car. Antonie Van Leeuwenhoek 106:219–225 [View Article][PubMed]
    [Google Scholar]
  19. Zhao J., Guo L., He H., Liu C., Zhang Y., Li C., Wang X., Xiang W. 2014; Micromonospora taraxaci sp. nov., a novel endophytic actinomycete isolated from dandelion root (Taraxacum mongolicum Hand.-Mazz.). Antonie Van Leeuwenhoek 106:667–674 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.001231
Loading
/content/journal/ijsem/10.1099/ijsem.0.001231
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error