1887

Abstract

A Gram-staining-positive, non-motile, non-spore-forming, coccus (strain 140805-STR-02) was isolated from exhaust air of a pig barn on Columbia Blood Agar Base (Oxoid) supplemented with 5 % defibrinated horse blood, selective supplement and 0.5 mg erythromycin l. The strains shared high 16S rRNA gene sequence similarity to (98.6 %) but only a maximum of 94 % sequence similarity to all other species of the genus . DNA–DNA hybridisation values between strain 140805-STR-02 and CIP 107946 were 60.3 % (reciprocal, 51.2 %). The quinone system of 140805-STR-02 contained predominantly menaquinone MK-7 and minor amounts of MK-6. The polar lipid profile of strain 140805-STR-02 contained the major compounds diphosphatidylglycerol and phosphatidylglycerol and four unidentified lipids present in minor to moderate amounts. In the polyamine pattern spermidine and spermine were predominant. The fatty acid profile comprising iso-C and anteiso-C as major fatty acids, and was in congruence with those reported for other species of the genus and thus supported the affiliation of strain 140805-STR-02 to this genus. The results of physiological and biochemical tests allowed a clear phenotypic differentiation of strain 140805-STR-02 from the most closely related species. Strain 140805-STR-02 represents a novel species, for which the names sp. nov. is proposed, with the type strain 140805-STR-02 (=LMG 29445=CCM 8667).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001230
2016-09-01
2020-09-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3503.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001230&mimeType=html&fmt=ahah

References

  1. Altenburgera P., Kämpferb P., Makristathisc A., Lubitza W., Bussea H. J.. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol47:39–52 [CrossRef]
    [Google Scholar]
  2. Alves M., Nogueira C., de Magalhães-Sant'ana A., Chung A. P., Morais P. V., da Costa M. S.. 2008; Nosocomiicoccus ampullae gen. nov., sp. nov., isolated from the surface of bottles of saline solution used in wound cleansing. Int J Syst Evol Microbiol58:2939–2944 [CrossRef][PubMed]
    [Google Scholar]
  3. Amoozegar M. A., Bagheri M., Makhdoumi-Kakhki A., Didari M., Schumann P., Nikou M. M., Sánchez-Porro C., Ventosa A.. 2014; Aliicoccus persicus gen. nov., sp. nov., a halophilic member of the Firmicutes isolated from a hypersaline lake. Int J Syst Evol Microbiol64:1964–1969 [CrossRef][PubMed]
    [Google Scholar]
  4. Brosius J., Dull T. J., Sleeter D. D., Noller H. F.. 1981; Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol148:107–127 [CrossRef][PubMed]
    [Google Scholar]
  5. Busse H. J., Bunka S., Hensel A., Lubitz W.. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol47:698–708 [CrossRef]
    [Google Scholar]
  6. Busse H. J., Hauser E., Kämpfer P.. 2005; Description of two novel species, Sphingomonas abaci sp. nov. and Sphingomonas panni sp. nov. Int J Syst Evol Microbiol55:2565–2569 [CrossRef][PubMed]
    [Google Scholar]
  7. Chen Y. G., Zhang Y. Q., Shi J. X., Xiao H. D., Tang S. K., Liu Z. X., Huang K., Cui X. L., Li W. J.. 2009; Jeotgalicoccus marinus sp. nov., a marine bacterium isolated from a sea urchin. Int J Syst Evol Microbiol59:1625–1629 [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  9. Felsenstein J.. 2005; phylip (Phylogeny Inference Package) version 3.6. . Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  10. Glaeser S. P., Galatis H., Martin K., Kämpfer P.. 2013; Niabella hirudinis and Niabella drilacis sp. nov., isolated from the medicinal leech Hirudo verbana. Int J Syst Evol Microbiol63:3487–3493 [CrossRef][PubMed]
    [Google Scholar]
  11. Gonzalez J. M., Saiz-Jimenez C.. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol4:770–773[PubMed][CrossRef]
    [Google Scholar]
  12. Guo X. Q., Li R., Zheng L. Q., Lin D. Q., Sun J. Q., Li S. P., Li W. J., Jiang J. D.. 2010; Jeotgalicoccus huakuii sp. nov., a halotolerant bacterium isolated from seaside soil. Int J Syst Evol Microbiol60:1307–1310 [CrossRef][PubMed]
    [Google Scholar]
  13. Gärtner A., Gessner A., Gromöller S., Klug K., Knust S., Jäckel U.. 2016; Emissionen aus Schweinemastanlagen – Untersuchungen zur Zusammensetzung der Bakteriengemeinschaft und Antibiotikaresistenz. Gefahrstoffe- Reinhaltung Der Luft/Air Quality Control1:31–38
    [Google Scholar]
  14. Hoyles L., Collins M. D., Foster G., Falsen E., Schumann P.. 2004; Jeotgalicoccus pinnipedialis sp. nov., from a southern elephant seal (Mirounga leonina). Int J Syst Evol Microbiol54:745–748 [CrossRef][PubMed]
    [Google Scholar]
  15. Jukes T. H., Cantor C. R.. 1969; Evolution of the protein molecules. In Mammalian Protein Metabolism pp21–132 Edited by Munro H. N.. New York: Academic Press; [CrossRef][PubMed]
    [Google Scholar]
  16. Kämpfer P.. 1990; Evaluation of the Titertek-Enterobac-Automated System (TTE-AS) for identification of members of the family Enterobacteriaceae. Zentralbl Bakteriol273:164–172 [CrossRef][PubMed]
    [Google Scholar]
  17. Kämpfer P., Kroppenstedt R. M.. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  18. Kämpfer P., Kroppenstedt R. M.. 2004; Pseudonocardia benzenivorans sp. nov. Int J Syst Evol Microbiol54:749–751 [CrossRef][PubMed]
    [Google Scholar]
  19. Kämpfer P., Steiof M., Dott W.. 1991; Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol21:227–251 [CrossRef][PubMed]
    [Google Scholar]
  20. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp.115–175 Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  21. Liu W. Y., Jiang L. L., Guo C. J., Yang S. S.. 2011a; Jeotgalicoccus halophilus sp. nov., isolated from salt lakes. Int J Syst Evol Microbiol61:1720–1724 [CrossRef][PubMed]
    [Google Scholar]
  22. Liu Z. X., Chen J., Tang S. K., Zhang Y. Q., He J. W., Chen Q. H., Li W. J., Chen Y. G.. 2011b; Jeotgalicoccus nanhaiensis sp. nov., isolated from intertidal sediment, and emended description of the genus Jeotgalicoccus. Int J Syst Evol Microbiol61:2029–2034 [CrossRef][PubMed]
    [Google Scholar]
  23. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. 2004; ARB: a software environment for sequence data. Nucleic Acids Res32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  24. Martin E., Fallschissel E., Kämpfer E., Jäckel E.. 2010; Detection of Jeotgalicoccus spp. in poultry house air. Syst Appl Microbiol33:188–192[CrossRef]
    [Google Scholar]
  25. Martin E., Klug K., Frischmann A., Busse H. J., Kämpfer P., Jäckel U.. 2011; Jeotgalicoccus coquinae sp. nov. and Jeotgalicoccus aerolatus sp. nov., isolated from poultry houses. Int J Syst Evol Microbiol61:237–241 [CrossRef][PubMed]
    [Google Scholar]
  26. Pitcher D. G., Saunders N. A., Owen R. J.. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol8:151–156 [CrossRef]
    [Google Scholar]
  27. Pruesse E., Peplies J., Glöckner F. O.. 2012; SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  28. Stolz A., Busse H. J., Kämpfer P.. 2007; Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol57:572–576 [CrossRef][PubMed]
    [Google Scholar]
  29. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  30. Tindall B. J.. 1990a; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  31. Tindall B. J.. 1990b; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  32. Watanabe K., Nagao N., Toda T., Kurosawa N.. 2008; Changes in bacterial communities accompanied by aggregation in a fed-batch composting reactor. Curr Microbiol56:458–467 [CrossRef][PubMed]
    [Google Scholar]
  33. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. 2008; The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  34. Yoon J. H., Lee K. C., Weiss N., Kang K. H., Park Y. H.. 2003; Jeotgalicoccus halotolerans gen. nov., sp. nov. and Jeotgalicoccus psychrophilus sp. nov., isolated from the traditional Korean fermented seafood jeotgal. Int J Syst Evol Microbiol53:595–602 [CrossRef][PubMed]
    [Google Scholar]
  35. Ziemke F., Brettar I., Höfle M. G.. 1997; Stability and diversity of the genetic structure of a Shewanella putrefaciens population in the water column of the central Baltic. Aquat Microb Ecol13:63–74 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001230
Loading
/content/journal/ijsem/10.1099/ijsem.0.001230
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error