1887

Abstract

A Gram-staining-negative, facultatively aerobic, white-colony-forming bacterium, designated strain SE-S21, was isolated from forest soil of Jeju Island in Korea. Cells were motile rods with a single polar flagellum, showing catalase- and oxidase-positive reactions. Growth was observed at 10–40 °C (optimum, 30 °C), pH 4.0–10.0 (optimum, pH 7.0–7.5) and with 0–4.0 % (w/v) NaCl (optimum, 0–2 %). Only ubiquinone-8 was detected as the isoprenoid quinone, and C16 : 0, C17 : 0 cyclo, C19 : 1ω8c cyclo and summed feature 2 (comprising C12 : 0 aldehyde and/or unknown) were found to be the major fatty acids. Phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, an unknown aminophospholipid, an unknown aminolipid and an unknown lipid were detected as the major polar lipids. Putrescine and 2-hydroxyputrescine were the predominant polyamines. The DNA G+C content was 61.0 mol%. Phylogenetic analyses based on 16S rRNA and DNA gyrase B gene sequences revealed that strain SE-S21 formed a phyletic lineage within the genus Pandoraea . Strain SE-S21 was most closely related to Pandoraea faecigallinarum KOx and Pandoraea pnomenusa CCUG 38742 with 98.8 % and 98.7 % 16S rRNA gene sequence similarities, respectively. However, the DNA–DNA relatedness values between strain SE-S21 and the type strains of P. faecigallinarum and P. pnomenusa were 26.6±5.7 % and 20.5±3.7 %, respectively. On the basis of phenotypic, chemotaxonomic and molecular features, strain SE-S21 clearly represents a novel species of the genus Pandoraea , for which the name Pandoraea terrae sp. nov. is proposed. The type strain is SE-S21 (=KACC 18127=JCM 30137). An emended description of the genus Pandoraea is also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001229
2016-09-01
2019-09-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3524.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001229&mimeType=html&fmt=ahah

References

  1. Anandham R., Indiragandhi P., Kwon S. W., Sa T. M., Jeon C. O., Kim Y. K., Jee H. J..( 2010;). Pandoraea thiooxydans sp. nov., a facultatively chemolithotrophic, thiosulfate-oxidizing bacterium isolated from rhizosphere soils of sesame (Sesamum indicum L.). . Int J Syst Evol Microbiol 60: 21–26. [CrossRef] [PubMed]
    [Google Scholar]
  2. Busse H. -J., Bunka S., Hensel A., Lubitz W..( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol 47: 698–708. [CrossRef]
    [Google Scholar]
  3. Chang H. W., Nam Y. D., Jung M. Y., Kim K. H., Roh S. W., Kim M. S., Jeon C. O., Yoon J. H., Bae J. W..( 2008;). Statistical superiority of genome-probing microarrays as genomic DNA–DNA hybridization in revealing the bacterial phylogenetic relationship compared to conventional methods. . J Microbiol Methods 75: 523–530. [CrossRef] [PubMed]
    [Google Scholar]
  4. Coenye T., Falsen E., Hoste B., Ohlén M., Goris J., Govan J. R., Gillis M., Vandamme P..( 2000;). Description of Pandoraea gen. nov. with Pandoraea apista sp. nov., Pandoraea pulmonicola sp. nov., Pandoraea pnomenusa sp. nov., Pandoraea sputorum sp. nov. and Pandoraea norimbergensis comb. nov. . Int J Syst Evol Microbiol 50: 887–899. [CrossRef] [PubMed]
    [Google Scholar]
  5. Coenye T., LiPuma J. J..( 2002;). Use of the gyrB gene for the identification of Pandoraea species. . FEMS Microbiol Lett 208: 15–19. [CrossRef] [PubMed]
    [Google Scholar]
  6. Daneshvar M. I., Hollis D. G., Steigerwalt A. G., Whitney A. M., Spangler L., Douglas M. P., Jordan J. G., MacGregor J. P., Hill B. C. et al.( 2001;). Assignment of CDC weak oxidizer group 2 (WO-2) to the genus Pandoraea and characterization of three new Pandoraea genomospecies. . J Clin Microbiol 39: 1819–1826. [CrossRef] [PubMed]
    [Google Scholar]
  7. Felsenstein J..( 2002;). phylip (phylogeny inference package), version 3.6a. . WA, USA:: Seattle: Department of genetics, University of Washington;.
  8. Gomori G..( 1955;). Preparation of buffers for use in enzyme studies. . In Methods in Enzymology,vol. 1 , pp. 138–146. Edited by Colowick S. P., Kaplan N. O.. New York:: Academic press;.
    [Google Scholar]
  9. Gonzalez J. M., Saiz-Jimenez C..( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4: 770–773.[PubMed] [CrossRef]
    [Google Scholar]
  10. Kim M., Oh H. S., Park S. C., Chun J..( 2014;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. . Int J Syst Evol Microbiol 64: 346–351. [CrossRef] [PubMed]
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  12. Komagata K., Suzuki K..( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19: 161–208.[CrossRef]
    [Google Scholar]
  13. Lányí B..( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19: 1–67.[CrossRef]
    [Google Scholar]
  14. Lee S. H., Shim J. K., Kim J. M., Choi H. K., Jeon C. O..( 2011;). Henriciella litoralis sp. nov., isolated from a tidal flat, transfer of Maribaculum marinum Lai et al. 2009 to the genus Henriciella as Henriciella aquimarina nom. nov. and emended description of the genus Henriciella. . Int J Syst Evol Microbiol 61: 722–727. [CrossRef] [PubMed]
    [Google Scholar]
  15. Lee H. J., Jeong S. E., Cho M. S., Kim S., Lee S. S., Lee B. H., Jeon C. O..( 2014;). Flavihumibacter solisilvae sp. nov., isolated from forest soil. . Int J Syst Evol Microbiol 64: 2897–2901. [CrossRef] [PubMed]
    [Google Scholar]
  16. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M..( 1977;). Polar Lipid Composition in the Classification of Nocardia and Related Bacteria. . Int J Syst Bacteriol 27: 104–117. [CrossRef]
    [Google Scholar]
  17. Nawrocki E. P., Eddy S. R..( 2007;). Query-dependent banding (QDB) for faster RNA similarity searches. . PLoS Comput Biol 3: e56. [CrossRef] [PubMed]
    [Google Scholar]
  18. Sahin N., Tani A., Kotan R., Sedlácek I., Kimbara K., Tamer A. U..( 2011;). Pandoraea oxalativorans sp. nov., Pandoraea faecigallinarum sp. nov. and Pandoraea vervacti sp. nov., isolated from oxalate-enriched culture. . Int J Syst Evol Microbiol 61: 2247–2253. [CrossRef] [PubMed]
    [Google Scholar]
  19. Sasser M..( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  20. Smibert R. M., Krieg N. R..( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology , pp. 607–654. Edited by Gerhardt P.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  21. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A., Kämpfer P., Maiden M. C., Nesme X., Rosselló-Mora R., Swings J. et al.( 2002;). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52: 1043–1047. [CrossRef] [PubMed]
    [Google Scholar]
  22. Stackebrandt E., Ebers J..( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33: 152–155.
    [Google Scholar]
  23. Stamatakis A., Ott M., Ludwig T..( 2005;). "RAxML-OMP: An efficient program for phylogenetic inference on SMPs". . In Proceedings of 8th International Conference on Parallel Computing Technologies (PaCT2005), Lecture Notes in Computer Science ,vol. 3506 pp. 288–302. Springer Verlag;.
    [Google Scholar]
  24. Tabacchioni S., Ferri L., Manno G., Mentasti M., Cocchi P., Campana S., Ravenni N., Taccetti G., Dalmastri C. et al.( 2008;). Use of the gyrB gene to discriminate among species of the Burkholderia cepacia complex. . FEMS Microbiol Lett 281: 175–182. [CrossRef] [PubMed]
    [Google Scholar]
  25. Thompson J. D., Higgins D. G., Gibson T. J..( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22: 4673–4680. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001229
Loading
/content/journal/ijsem/10.1099/ijsem.0.001229
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error