1887

Abstract

A Gram-stain-positive, alkaliphilic, non-spore-forming, non-motile bacterium, designated VDS11, was isolated from a soil sample collected from the hexachlorocyclohexane dumpsite, located at Ummari Village, Lucknow, Uttar Pradesh, India. 16S rRNA gene sequence analysis indicated that strain VDS11 occupies a distinct phylogenetic position within the genus Corynebacterium , showing the highest sequence similarity with Corynebacterium humireducens MFC-5 (98.7 %) and Corynebacterium nasicanis 2673/12 (98.4 %). The DNA G+C content was 50.6 mol% and the DNA–DNA hybridization (DDH) relatedness value with C. humireducens MFC-5 and C. nasicanis 2673/12 was 49.7 and 39.6 %, respectively. Strain VDS11 contained C16 : 0 (28.3), C18 : 1ω9c (52.3), C18 : 0 (1.3) and C20 : 0 (3.0) as the major cellular fatty acids. The major isoprenoid quinone was MK-9(H2). Strain VDS11 contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, unidentified aminolipids, glycolipids, phospholipids and unidentified lipids as the major polar lipids. The peptidoglycan type was A31 (meso 2, 6-diaminopimelic acid, directly cross-linked). Based on the results of DDH studies and the biochemical and physiological data, strain VDS11 represents a novel species of the genus Corynebacteriumfor which the name Corynebacterium pollutisoli sp. nov., has been proposed. The type strain is VDS11(=DSM 100104=MCC 2722=KCTC 39687).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001228
2016-09-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3531.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001228&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J..( 1990;). Basic local alignment search tool. . J Mol Biol 215: 403–410. [CrossRef] [PubMed]
    [Google Scholar]
  2. Arden Jones M. P., McCarthy A. J., Cross T..( 1979;). Taxonomic and serologic studies on Micropolyspora faeni and Micropolyspora strains from soil bearing the specific epithet rectivirgula. . J Gen Microbiol 115: 343–354. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bauer A. W., Kirby W. M., Sherris J. C., Turck M..( 1966;). Antibiotic susceptibility testing by a standardized single disk method. . Am J Clin Pathol 45: 493–496.[PubMed]
    [Google Scholar]
  4. Baumgardt S., Loncaric I., Kämpfer P., Busse H. J..( 2015;). Description of Corynebacterium tapiri sp. nov. and Corynebacterium nasicanis sp. nov., isolated from a tapir and a dog. . Int J Syst Evol Microbiol 65: 3885–3893. [CrossRef]
    [Google Scholar]
  5. Bernard K. A., Funke G..( 2012;). Genus Corynebacterium. . In Whitman WB Bergey's Manual of Systematic Bacteriology,vol. 5, The Actinobacteria, pp. 245–289. New York:: Springer;.
    [Google Scholar]
  6. Bowman J. P., Nichols C. M., Gibson J. A..( 2003;). Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov.,Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. . Int J Syst Evol Microbiol 53: 1343–1355. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chen H. H., Li W. J., Tang S. K., Kroppenstedt R. M., Stackebrandt E., Xu L. H., Jiang C. L..( 2004;). Corynebacterium halotolerans sp. nov., isolated from saline soil in the west of China. . Int J Syst Evol Microbiol 54: 779–782. [CrossRef] [PubMed]
    [Google Scholar]
  8. Cole J. R., Wang Q., Fish J. A., Chai B., McGarrell D. M., Sun Y., Brown C. T., Porras-Alfaro A., Kuske C. R. et al.( 2014;). Ribosomal Database Project: data and tools for high throughput rRNA analysis. . Nucleic Acids Res 42: D633–D642. [CrossRef] [PubMed]
    [Google Scholar]
  9. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E..( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100: 221–230. [CrossRef] [PubMed]
    [Google Scholar]
  10. Collins M. D., Bernard K. A., Hutson R. A., Sjödén B., Nyberg A., Falsen E..( 1999;). Corynebacterium sundsvallense sp. nov., from human clinical specimens. . Int J Syst Bacteriol 49: 361–366. [CrossRef] [PubMed]
    [Google Scholar]
  11. Cullings K. W..( 1992;). Design and testing of a plant-specific PCR primer for ecological and evolutionary studies. . Mol Ecol 1: 233–240. [CrossRef]
    [Google Scholar]
  12. Dadhwal M., Jit S., Kumari H., Lal R..( 2009;). Sphingobium chinhatense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite. . Int J Syst Evol Microbiol 59: 3140–3144. [CrossRef] [PubMed]
    [Google Scholar]
  13. De Ley J., Cattoir H., Reynaerts A..( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12: 133–142.[PubMed] [CrossRef]
    [Google Scholar]
  14. Doyle J. J., Dickson E. E..( 1987;). Preservation of plant samples for DNA restriction endonuclease analysis. . Taxon 36: 715–722. [CrossRef]
    [Google Scholar]
  15. Doyle J. J., Doyle J. L..( 1987;). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. . Phytochemistry Bulletin 19: 11–15.
    [Google Scholar]
  16. Du Z. J., Jordan E. M., Rooney A. P., Chen G. J., Austin B..( 2010;). Corynebacterium marinum sp. nov. isolated from coastal sediment. . Int J Syst Evol Microbiol 60: 1944–1947. [CrossRef] [PubMed]
    [Google Scholar]
  17. Esteban J., Nieto E., Calvo R., Fernández-Robals R., Valero-Guillén P. L., Soriano F..( 1999;). Microbiological characterization and clinical significance of Corynebacterium amycolatum strains. . Eur J Clin Microbiol Infect Dis 18: 518–521.[PubMed] [CrossRef]
    [Google Scholar]
  18. Euzéby J. P..( 1997;). List of bacterial names with standing in nomenclature: a folder available on the internet. . Int J Sys Evol Microbiol 47: 590–592.[CrossRef]
    [Google Scholar]
  19. Fudou R., Jojima Y., Seto A., Yamada K., Kimura E., Nakamatsu T., Hiraishi A., Yamanaka S..( 2002;). Corynebacterium efficiens sp. nov., a glutamic-acid-producing species from soil and vegetables. . Int J Syst Evol Microbiol 52: 1127–1131. [CrossRef] [PubMed]
    [Google Scholar]
  20. Goldman N..( 1990;). Maximum likelihood inference of phylogenetic trees, with special reference to a poisson process model of DNA substitution and to parsimony analyses. . Syst Biol 39: 345–361. [CrossRef]
    [Google Scholar]
  21. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kumari R., Subudhi S., Suar M., Dhingra G., Raina V., Dogra C., Lal S., van der Meer J. R., Holliger C. et al.( 2002;). Cloning and characterization of lin genes responsible for the degradation of Hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90. . Appl Environ Microbiol 68: 6021–6028. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kuykendall L. D., Roy M. A., O’Neil J. J., Devine T. E..( 1988;). Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradorhizobium japonicum. . Int J Syst Bacteriol 38: 358–361.[CrossRef]
    [Google Scholar]
  24. Lal R., Pandey G., Sharma P., Kumari K., Malhotra S., Pandey R., Raina V., Kohler H. P., Holliger C. et al.( 2010;). Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. . Microbiol Mol Biol Rev 74: 58–80. [CrossRef] [PubMed]
    [Google Scholar]
  25. Lane D. J..( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M.. Chichester:: Wiley;
    [Google Scholar]
  26. Lehman K. B., Neumann R..( 1896;). Atlas und grundriss der bakteriologie und lehrbuch der speciellen bakteriologischen diagnostik, , 1st edn.. Edited by Lehmann J. F.. München:: Lane Library, Stanford University;.
    [Google Scholar]
  27. Loveland-Curtze J., Miteva V. I., Brenchley J. E..( 2011;). Evaluation of a new fluorimetric DNA-DNA hybridization method. . Can J Microbiol 57: 250–255. [CrossRef] [PubMed]
    [Google Scholar]
  28. Maidak B. L., Cole J. R., Lilburn T. G., Parker C. T., Saxman P. R., Farris R. J., Garrity G. M., Olsen G. J., Schmidt T. M. et al.( 2001;). The RDP-II (Ribosomal Database Project). . Nucleic Acids Res 29: 173–174. [CrossRef] [PubMed]
    [Google Scholar]
  29. Mccarthy A. J., Cross T..( 1984;). A taxonomic study of thermomonospora and other monosporic actinomycetes. . Microbiology 130: 5–25. [CrossRef]
    [Google Scholar]
  30. Miller L. T..( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16: 584–586.[PubMed]
    [Google Scholar]
  31. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J. H..( 1984;). An integrated procedure for the extraction of isoprenoid quinones and polar lipids. . J Microbiol Methods 2: 233–241.[CrossRef]
    [Google Scholar]
  32. Nagata Y., Endo R., Ito M., Ohtsubo Y., Tsuda M..( 2007;). Aerobic degradation of lindane (gamma-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. . Appl Microbiol Biotechnol 76: 741–752. [CrossRef] [PubMed]
    [Google Scholar]
  33. Pascual C., Foster G., Alvarez N., Collins M. D..( 1998;). Corynebacterium phocae sp. nov., isolated from the common seal (Phoca vitulina). . Int J Syst Bacteriol 48: 601–604. [CrossRef] [PubMed]
    [Google Scholar]
  34. Prakash O., Verma M., Sharma P., Kumar M., Kumari K., Singh A., Kumari H., Jit S., Gupta S. K. et al.( 2007;). Polyphasic approach of bacterial classification – an overview of recent advances. . Indian J Microbiol 47: 98–108. [CrossRef] [PubMed]
    [Google Scholar]
  35. Riegel P., Ruimy R., de Briel D., Prévost G., Jehl F., Christen R., Monteil H..( 1995;). Genomic diversity and phylogenetic relationships among lipid-requiring diphtheroids from humans and characterization of Corynebacterium macginleyi sp. nov. . Int J Syst Bacteriol 45: 128–133. [CrossRef] [PubMed]
    [Google Scholar]
  36. Riegel P., Heller R., Prevost G., Jehl F., Monteil H..( 1997;). Corynebacterium durum sp. nov., from human clinical specimens. . Int J Syst Bacteriol 47: 1107–1111. [CrossRef] [PubMed]
    [Google Scholar]
  37. Rückert C., Albersmeier A., Al-Dilaimi A., Niehaus K., Szczepanowski R., Kalinowski J..( 2012;). Genome sequence of the halotolerant bacterium Corynebacterium halotolerans type strain YIM 70093(T) (= DSM 44683(T)). . Stand Genomic Sci 7: 284–293. [CrossRef] [PubMed]
    [Google Scholar]
  38. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  39. Sangwan N., Lata P., Dwivedi V., Singh A., Niharika N., Kaur J., Anand S., Malhotra J., Jindal S. et al.( 2012;). Comparative metagenomic analysis of soil microbial communities across three hexachlorocyclohexane contamination levels. . PLoS One 7: e46219. [CrossRef] [PubMed]
    [Google Scholar]
  40. Sasser M..( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  41. Schumann P..( 2011;). Peptidoglycan structure. In Taxonomy of Prokaryotes. . Methods Microbiol 38: 101–129.[CrossRef]
    [Google Scholar]
  42. Sharma P., Verma M., Bala K., Nigam A., Lal R..( 2010;). Sphingopyxis ummariensis sp. nov., isolated from a hexachlorocyclohexane dump site. . Int J Syst Evol Microbiol 60: 780–784. [CrossRef] [PubMed]
    [Google Scholar]
  43. Singh A., Lal R..( 2009;). Sphingobium ummariense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil. . Int J Syst Evol Microbiol 59: 162–166. [CrossRef] [PubMed]
    [Google Scholar]
  44. Singh A. K., Garg N., Sangwan N., Negi V., Kumar R., Vikram S., Lal R..( 2013;). Pontibacter ramchanderi sp. nov., isolated from hexachlorocyclohexane-contaminated pond sediment. . Int J Syst Evol Microbiol 63: 2829–2834. [CrossRef] [PubMed]
    [Google Scholar]
  45. Singh A. K., Garg N., Lata P., Kumar R., Negi V., Vikram S., Lal R..( 2014;). Pontibacter indicus sp. nov., isolated from hexachlorocyclohexane-contaminated soil. . Int J Syst Evol Microbiol 64: 254–259. [CrossRef] [PubMed]
    [Google Scholar]
  46. Singh A. K., Garg N., Lal R..( 2015;). Pontibacter chinhatensis sp. nov., isolated from pond sediment containing discarded hexachlorocyclohexane isomer waste. . Int J Syst Evol Microbiol 65: 2248–2254. [CrossRef] [PubMed]
    [Google Scholar]
  47. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S..( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28: 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  48. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G..( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25: 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  49. Vanbroekhoven K., Ryngaert A., Bastiaens L., Wattiau P., Vancanneyt M., Swings J., De Mot R., Springael D..( 2004;). Streptomycin as a selective agent to facilitate recovery and isolation of introduced and indigenous Sphingomonas from environmental samples. . Environ Microbiol 6: 1123–1136. [CrossRef] [PubMed]
    [Google Scholar]
  50. Vandamme P., Pot B., Gillis M., de Vos P., Kersters K., Swings J..( 1996;). Polyphasic taxonomy, a consensus approach to bacterial systematics. . Microbiol Rev 60: 407–438.[PubMed]
    [Google Scholar]
  51. Verma H., Rani P., Singh A. K., Kumar R., Dwivedi V., Negi V., Lal R..( 2015;). Sphingopyxis flava sp. nov., isolated from a hexachlorocyclohexane (HCH)-contaminated soil. . Int J Syst Evol Microbiol 65: 3720–3726. [CrossRef] [PubMed]
    [Google Scholar]
  52. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al.( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematic. . Int J Syst Evol Microbiol 37: 463–464.[CrossRef]
    [Google Scholar]
  53. Wu C. Y., Zhuang L., Zhou S. G., Li F. B., He J..( 2011;). Corynebacterium humireducens sp. nov., an alkaliphilic, humic acid-reducing bacterium isolated from a microbial fuel cell. . Int J Syst Evol Microbiol 61: 882–887. [CrossRef] [PubMed]
    [Google Scholar]
  54. Xu Z., Malmer D., Langille M. G., Way S. F., Knight R..( 2014;). Which is more important for classifying microbial communities: who's there or what they can do?. ISME J 8: 2357–2359. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001228
Loading
/content/journal/ijsem/10.1099/ijsem.0.001228
Loading

Data & Media loading...

Supplementary File 1

WORD

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error