1887

Abstract

A non-motile and rod-shaped bacterium, designated strain WW84, was isolated from freshwater collected from the Woopo wetland (Republic of Korea). Cells were Gram-stain-negative, aerobic, catalase-positive and oxidase-negative. The major fatty acids were C, C, iso-C and iso-CI and/or anteiso-CB. The strain contained MK-7 as the major isoprenoid quinone, phosphatidylethanolamine as the major polar lipid and homospermidine as the major polyamine. The DNA G+C content was 59 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain WW84 forms an evolutionary lineage within the radiation including the members of the genus with Myx 2105 (96.96 % sequence similarity) as its nearest neighbor. A number of phenotypic characteristics distinguished strain WW84 from the related members of the genus . On the basis of the evidence presented in this study, a novel species, sp. nov. is proposed with strain WW84 (=KCTC 32530=JCM 19493) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001226
2016-09-01
2020-09-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3546.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001226&mimeType=html&fmt=ahah

References

  1. Baik K. S., Seong C. N., Moon E. Y., Park Y. D., Yi H., Chun J.. 2006; Hymenobacter rigui sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol56:2189–2192 [CrossRef][PubMed]
    [Google Scholar]
  2. Bernardet J. F., Nakagawa Y., Holmes B.. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  3. Buczolits S., Denner E. B., Vybiral D., Wieser M., Kämpfer P., Busse H. J.. 2002; Classification of three airborne bacteria and proposal of Hymenobacter aerophilus sp. nov. Int J Syst Evol Microbiol52:445–456 [CrossRef][PubMed]
    [Google Scholar]
  4. Buczolits S., Denner E. B., Kämpfer P., Busse H. J.. 2006; Proposal of Hymenobacter norwichensis sp. nov., classification of ‘Taxeobacter ocellatus', ‘Taxeobacter gelupurpurascens' and ‘Taxeobacter chitinovorans' as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitionvorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol56:2071–2078[CrossRef]
    [Google Scholar]
  5. Chang X., Zheng J., Jiang F., Liu P., Kan W., Qu Z., Fang C., Peng F.. 2014; Hymenobacter arcticus sp. nov., isolated from glacial till. Int J Syst Evol Microbiol64:2113–2118 [CrossRef][PubMed]
    [Google Scholar]
  6. Chun J., Goodfellow M.. 1995; A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol45:240–245 [CrossRef][PubMed]
    [Google Scholar]
  7. Chung A. P., Lopes A., Nobre M. F., Morais P. V.. 2010; Hymenobacter perfusus sp. nov., Hymenobacter flocculans sp. nov. andHymenobacter metalli sp. nov. three new species isolated from an uranium mine waste water treatment system. Syst Appl Microbiol33:436–443 [CrossRef][PubMed]
    [Google Scholar]
  8. CLSI 2009; Performance Standards for Antimicrobial Susceptibility Testing. 19th Informational Supplement. CLSI Document M100-S19 (ISBN 1-56238-690-5) Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  9. Collins M. D.. 1994; Isoprenoid quinones. In Chemical Methods in Prokaryotic Systematics , pp.265–309 Edited by Goodfellow M., O’Donnell A. G.. Chichester: Johb Wiley & Sons Ltd;
    [Google Scholar]
  10. Collins M. D., Hutson R. A., Grant I. R., Patterson M. F.. 2000; Phylogenetic characterization of a novel radiation-resistant bacterium from irradiated pork: description of Hymenobacter actinosclerus sp. nov. Int J Syst Evol Microbiol50:731–734 [CrossRef][PubMed]
    [Google Scholar]
  11. Dai J., Wang Y., Zhang L., Tang Y., Luo X., An H., Fang C.. 2009; Hymenobacter tibetensis sp. nov., a UV-resistant bacterium isolated from Qinghai-Tibet plateau. Syst Appl Microbiol32:543–548 [CrossRef][PubMed]
    [Google Scholar]
  12. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  13. Felsenstein J.. 1993; PHYLIP (phylogeny inference package), version 3.5c. Department of Genetics, University of Washington, Seattle, USA.
  14. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  15. Gordon R. E., Mihm J. M.. 1962; Identification of Nocardia caviae (Erikson) nov. comb. Ann N Y Acad Sci98:628–636 [CrossRef]
    [Google Scholar]
  16. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser41:95–98
    [Google Scholar]
  17. Hirsch P., Ludwig W., Hethke C., Sittig M., Hoffmann B., Gallikowski C. A.. 1999; Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antartica soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol21:374–383 [CrossRef][PubMed]
    [Google Scholar]
  18. Hoang V. A., Kim Y. J., Nguyen N. L., Yang D. C.. 2013; Hymenobacter ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol63:661–666 [CrossRef][PubMed]
    [Google Scholar]
  19. Jukes T. H., Cantor C. R.. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism, pp.21–132 Edited by Munro H. N.. York New: Press Academic;[CrossRef]
    [Google Scholar]
  20. Kang J. Y., Chun J., Choi A., Moon S. H., Cho J. C., Jahng K. Y.. 2013; Hymenobacter koreensis sp. nov. andHymenobacter saemangeumensis sp. nov., isolated from estuarine water. Int J Syst Evol Microbiol63:4568–4573 [CrossRef][PubMed]
    [Google Scholar]
  21. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  22. Klassen J. L., Foght J. M.. 2008; Differences in carotenoid composition among hymenobacter and related strains support a tree-like model of carotenoid evolution. Appl Environ Microbiol74:2016–2022 [CrossRef][PubMed]
    [Google Scholar]
  23. Klassen J. L., Foght J. M.. 2011; Characterization of Hymenobacter isolates from Victoria Upper Glacier, Antarctica reveals five new species and substantial non-vertical evolution within this genus. Extremophiles15:45–57 [CrossRef][PubMed]
    [Google Scholar]
  24. Komagata K., Suzuki K.. 1987; Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol19:161–207[CrossRef]
    [Google Scholar]
  25. Kovacs N.. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature178:703 [CrossRef][PubMed]
    [Google Scholar]
  26. Marmur J., Doty P.. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol5:109–118[PubMed][CrossRef]
    [Google Scholar]
  27. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  28. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  29. Schenkel E., Berlaimont V., Dubois J., Helson-Cambier M., Hanocq M.. 1995; Improved high-performance liquid chromatographic method for the determination of polyamines as their benzoylated derivatives: application to P388 cancer cells. J Chromatogr B Biomed Appl668:189–197 [CrossRef][PubMed]
    [Google Scholar]
  30. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp.607–654Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  31. Stanier R. Y.. 1940; Studies on the Cytophagas. J Bacteriol40:619–636[PubMed]
    [Google Scholar]
  32. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  33. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  34. Zhang L., Dai J., Tang Y., Luo X., Wang Y., An H., Fang C., Zhang C.. 2009; Hymenobacter deserti sp. nov., isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol59:77–82 [CrossRef][PubMed]
    [Google Scholar]
  35. Zhang Q., Liu C., Tang Y., Zhou G., Shen P., Fang C., Yokota A.. 2007; Hymenobacter xinjiangensis sp. nov., a radiation-resistant bacterium isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol57:1752–1756 [CrossRef][PubMed]
    [Google Scholar]
  36. Zhang G., Niu F., Busse H. J., Ma X., Liu W., Dong M., Feng H., An L., Cheng G.. 2008; Hymenobacter psychrotolerans sp. nov., isolated from the Qinghai–Tibet Plateau permafrost region. Int J Syst Evol Microbiol58:1215–1220 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001226
Loading
/content/journal/ijsem/10.1099/ijsem.0.001226
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error