Skip to content
1887

Abstract

Mexican periwinkle virescence (MPV) phytoplasma was originally discovered in diseased plants of Madagascar periwinkle () in Yucatán, Mexico. On the basis of results from RFLP analysis of PCR-amplified 16S rRNA gene sequences, strain MPV was previously classified as the first known member of phytoplasma group 16SrXIII, and a new subgroup (16SrXIII-A) was established to accommodate MPV phytoplasma. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain MPV represents a lineage distinct from previously described ‘ ’ species. Nucleotide sequence alignments revealed that strain MPV shared less than 97.5 % 16S rRNA gene sequence similarity with all previously described ‘ ’ species. Based on unique properties of the DNA, we propose recognition of Mexican periwinkle virescence phytoplasma strain MPV as representative of a novel taxon, ‘ hispanicum’.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001218
2016-09-01
2025-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3463.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001218&mimeType=html&fmt=ahah

References

  1. Arneodo J. D., Marini D. C., Galdeano E., Meneguzzi N., Bacci M., Domecq C., Nome S. F., Conci L. R. 2007; Diversity and geographical distribution of phytoplasmas infecting china-tree in Argentina. J Phytopathol 155:70–75 [View Article]
    [Google Scholar]
  2. Davis R. E., Sinclair W. A. 1998; Phytoplasma identity and disease etiology. Phytopathology 88:1372–1376 [View Article][PubMed]
    [Google Scholar]
  3. Davis R. E., Jomantiene R., Zhao Y. 2007; Dynamic structures in phytoplasma genomes: sequence-variable mosaics (SVMs) of clustered genes. Bull Insectol 60:119–120
    [Google Scholar]
  4. Fernández F. D., Meneguzzi N. G., Guzmán F. A., Kirschbaum D. S., Conci V. C., Nome C. F., Conci L. R. 2015; Detection and identification of a novel 16SrXIII subgroup phytoplasma associated with strawberry red leaf disease in Argentina. Int J Syst Evol Microbiol 65:2741–2747 [View Article][PubMed]
    [Google Scholar]
  5. Gundersen D. E., Lee I. M., Rehner S. A., Davis R. E., Kingsbury D. T. 1994; Phylogeny of mycoplasmalike organisms (phytoplasmas): a basis for their classification. J Bacteriol 176:5244–5254[PubMed]
    [Google Scholar]
  6. Harrison N. A., Legard D. E., DiBonito R., Richardson P. A. 1997; Detection and differentiation of phytoplasmas associated with diseases of strawberry in Florida. Plant Dis 81:230 [View Article]
    [Google Scholar]
  7. Harrison N. A., Boa E., Carpio M. L. 2003; Characterization of phytoplasmas detected in Chinaberry trees with symptoms of leaf yellowing and decline in Bolivia. Plant Pathol 52:147–157 [View Article]
    [Google Scholar]
  8. Harrison N. A., Davis R. E., Oropeza C., Helmick E. E., Narváez M., Eden-Green S., Dollet M., Dickinson M. 2014; ‘Candidatus Phytoplasma palmicola', associated with a lethal yellowing-type disease of coconut (Cocos nucifera L.) in Mozambique. Int J Syst Evol Microbiol 64:1890–1899 [View Article][PubMed]
    [Google Scholar]
  9. Holguín-Peña R. J., Vázquez-Juárez R. C., Martínez-Soriano J. P. 2007; First report of a 16SrI-B group phytoplasma associated with a yellows-type disease affecting tomato plants in the Baja California Peninsula of Mexico. Plant Disease 91:328 [View Article]
    [Google Scholar]
  10. IRPCM (International Research Program for Comparative Mycoplasmology) 2004; ‘Candidatus Phytoplasma', a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 54:1243–1255 [View Article][PubMed]
    [Google Scholar]
  11. Jomantiene R., Davis R. E., Maas J., Dally E. L. 1998; Classification of new phytoplasmas associated with diseases of strawberry in Florida, based on analysis of 16S rRNA and ribosomal protein gene operon sequences. Int J Syst Bacteriol 48:269–277 [View Article][PubMed]
    [Google Scholar]
  12. Jomantiene R., Davis R. E. 2006; Clusters of diverse genes existing as multiple, sequence-variable mosaics in a phytoplasma genome. FEMS Microbiol Lett 255:59–65 [View Article][PubMed]
    [Google Scholar]
  13. Lee I.-M., Gundersen-Rindal D. E., Davis R. E., Bartoszyk I. M. 1998; Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int Syst Bacteriol 48:1153–1169 [View Article]
    [Google Scholar]
  14. Lee I. M., Davis R. E., Gundersen-Rindal D. E. 2000; Phytoplasma: phytopathogenic mollicutes. Ann Rev Microbiol 54:221–255 [View Article][PubMed]
    [Google Scholar]
  15. MacLean A. M., Sugio A., Makarova O. V., Findlay K. C., Grieve V. M., Tóth R., Nicolaisen M., Hogenhout S. A. 2011; Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in arabidopsis plants. Plant Physiol 157:831–841 [View Article][PubMed]
    [Google Scholar]
  16. Melo L., Silva E., Flôres D., Ventura J., Costa H., Bedendo I. 2013; A phytoplasma representative of a new subgroup, 16SrXIII-E, associated with Papaya apical curl necrosis. Eur J Plant Pathol 137:445–450 [View Article]
    [Google Scholar]
  17. Minato N., Himeno M., Hoshi A., Maejima K., Komatsu K., Takebayashi Y., Kasahara H., Yusa A., Yamaji Y. et al. 2014; The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways. Sci Rep 4:7399 [View Article][PubMed]
    [Google Scholar]
  18. Šafářová D., Zemánek T., Válová P., Navrátil M. 2016; ‘Candidatus Phytoplasma cirsii’, a novel taxon from creeping thistle [Cirsium arvense (L.) Scop.]. Int J Syst Evol Microbiol 66:1745–1753 [View Article]
    [Google Scholar]
  19. Santos-Cervantes M. E., Chávez-Medina J. A., Acosta-Pardini J., Flores-Zamora G. L., Méndez-Lozano J., Leyva-López N. E. 2010; Genetic diversity and geographical distribution of phytoplasmas associated with potato purple top disease in Mexico. Plant Dis 94:388–395 [View Article]
    [Google Scholar]
  20. Sugio A., MacLean A. M., Kingdom H. N., Grieve V. M., Manimekalai R., Hogenhout S. A. 2011; Diverse targets of phytoplasma effectors: from plant development to defense against insects. Ann Rev Phytopathol 49:175–195 [View Article][PubMed]
    [Google Scholar]
  21. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  22. Wei W., Davis R. E., Lee I. M., Zhao Y. 2007; Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int J Syst Evol Microbiol 57:1855–1867 [View Article][PubMed]
    [Google Scholar]
  23. Wei W., Davis R. E., Jomantiene R., Zhao Y. 2008a; Ancient, recurrent phage attacks and recombination shaped dynamic sequence-variable mosaics at the root of phytoplasma genome evolution. Proc Natl Acad Sci USA 105:11827–11832 [View Article]
    [Google Scholar]
  24. Wei W., Lee I. M., Davis R. E., Suo X., Zhao Y. 2008b; Automated RFLP pattern comparison and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16Sr subgroup lineages. Int J Syst Evol Microbiol 58:2368–2377 [View Article][PubMed]
    [Google Scholar]
  25. Wei W., Davis R. E., Nuss D. L., Zhao Y. 2013; Phytoplasmal infection derails genetically preprogrammed meristem fate and alters plant architecture. Proc Natl Acad Sci USA 110:19149–19154 [View Article][PubMed]
    [Google Scholar]
  26. Zhao Y., Wei W., Lee I. M., Shao J., Suo X., Davis R. E. 2009; Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). Int J Syst Evol Microbiol 59:2582–2593 [View Article][PubMed]
    [Google Scholar]
  27. Zhao Y., Wei W., Davis R. E., Lee I.-M. 2010; Recent advances in 16S rRNA gene-based phytoplasma differentiation, classification and taxonomy. In Phytoplasmas: Genomes, Plant Hosts and Vector , pp. 64–92 Edited by Weintraub P., Jones P. Wallingford, UK: CABI Publishing;
    [Google Scholar]
  28. Zhao Y., Davis R. E., Wei W., Shao J., Jomantiene R. 2014; Phytoplasma genomes: Evolution through mutually complementary mechanisms, gene loss and horizontal acquisition. In Genomics of Plant-Associated Bacteria pp 235–271 Edited by Gross D. C., Lichens-Park A., Kole C. Heidelberg, Germany: Springer-Verlag Berlin and Heidelberg GmbH & Co;
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.001218
Loading
/content/journal/ijsem/10.1099/ijsem.0.001218
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error