1887

Abstract

A Gram-stain-negative, aerobic, non-motile bacterial strain, 7Y-4, was isolated from bark tissue of . The isolate was able to grow between 10 and 37 °C, with optimal growth occurring at 28–30 °C. Strain 7Y-4 was positive for oxidase and catalase activities, but did not reduce nitrite from nitrate. Positive reactions were observed for the activities of β-galactosidase, urease and β-glucosidase, but negative reactions for the activities of gelatinase and the production of indole, acetoin and HS. Citrate was not utilized. The major fatty acids of strain 7Y-4 are iso-C (28.6 %), Cω7/Cω6 (31.8 %) and iso-C 3-OH (23.3 %).The major polar lipids of the novel isolate include phosphatidylethanolamine, three unknown phospholipids (PL1–3) and six unknown lipids (L1–6), and the predominant menaquinone is MK-7. The DNA G+C content is 41.7 mol%. Analysis of 16S rRNA gene sequences revealed that the novel isolate shared the greatest sequence similarity with XH4 (93.50 %). On the basis of phenotypic and genotypic characteristics, strain 7Y-4 represents a novel species of the genus , for which the name is proposed. The type strain is 7Y-4 (=CFCC 11742=KCTC 42247).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001217
2016-09-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3456.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001217&mimeType=html&fmt=ahah

References

  1. Baker G. C., Smith J. J., Cowan D. A.. 2003; Review and re-analysis of domain-specific 16S primers. J Microbiol Methods55:541–555 [CrossRef][PubMed]
    [Google Scholar]
  2. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  3. Du H. J., Zhang Y. Q., Liu H. Y., Su J., Wei Y. Z., Ma B. P., Guo B. L., Yu L. Y.. 2013; Allonocardiopsis opalescens gen. nov., sp. nov., a new member of the suborder Streptosporangineae, from the surface-sterilized fruit of a medicinal plant. Int J Syst Evol Microbiol63:900–904 [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  5. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. R.. 1981; Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. 2007; DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  7. Groth I., Schumann P., Rainey F. A., Martin K., Schuetze B., Augsten K.. 1997; Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol47:1129–1133 [CrossRef][PubMed]
    [Google Scholar]
  8. Jenkins D., Richard M. G., Daigger G. T.. 1986; Manual on the causes and control of activated sludge bulking and foaming. Water Research Commission.
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  10. Lagesen K., Hallin P., Rødland E. A., Staerfeldt H. H., Rognes T., Ussery D. W.. 2007; RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res35:3100–3108 [CrossRef][PubMed]
    [Google Scholar]
  11. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics , pp.115–175 Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  12. Laslett D., Canback B.. 2004; ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res32:11–16 [CrossRef][PubMed]
    [Google Scholar]
  13. Lee I., Kim Y. O., Park S. C., Chun J.. 2015; OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol18:
    [Google Scholar]
  14. Li Y., He W., Wang T., Piao C. G., Guo L. M., Chang J. P., Guo M. W., Xie S. J.. 2014; Acinetobacter qingfengensis sp. nov., isolated from canker bark of Populus x euramericana. Int J Syst Evol Microbiol64:1043–1050 [CrossRef][PubMed]
    [Google Scholar]
  15. Liu J., Yang L. L., Xu C. K., Xi J. Q., Yang F. X., Zhou F., Zhou Y., Mo M. H., Li W. J.. 2012; Sphingobacterium nematocida sp. nov., a nematicidal endophytic bacterium isolated from tobacco. Int J Syst Evol Microbiol62:1809–1813 [CrossRef][PubMed]
    [Google Scholar]
  16. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Metheods2:233–241 [CrossRef]
    [Google Scholar]
  17. Qin Q. L., Xie B. B., Zhang X. Y., Chen X. L., Zhou B. C., Zhou J., Oren A., Zhang Y. Z.. 2014; A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol196:2210–2215 [CrossRef][PubMed]
    [Google Scholar]
  18. Richter M., Rosselló-Móra R.. 2009; Shifting the genomic gold standard for the prokaryotic species definition. PNAS106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  19. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  20. Schmidt V. S., Wenning M., Scherer S.. 2012; Sphingobacterium lactis sp. nov. and Sphingobacterium alimentarium sp. nov., isolated from raw milk and a dairy environment. Int J Syst Evol Microbiol62:1506–1511 [CrossRef][PubMed]
    [Google Scholar]
  21. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Manual of Methods for General and Microbiology , pp.607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  24. Xiao T., He X., Cheng G., Kuang H., Ma X., Yusup K., Hamdun M., Gulsimay A., Fang C. et al. 2013; Sphingobacterium hotanense sp. nov., isolated from soil of aPopulus euphratica forest, and emended descriptions of Sphingobacterium daejeonense and Sphingobacterium shayense. Int J Syst Evol Microbiol63:815–820 [CrossRef][PubMed]
    [Google Scholar]
  25. Yabuuchi E., Kaneko T., Yano I., Moss C. W., Miyoshi N.. 1983; Sphingobacterium gen. nov.,Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., andFlavobacterium indologenes sp. nov.: glucose-nonfermenting Gram-negative rods in CDC Groups IIK-2 and IIb. Int J Syst Bacteriol33:580–598 [CrossRef]
    [Google Scholar]
  26. Zhao Y., Wu J., Yang J., Sun S., Xiao J., Yu J.. 2012; PGAP: pan-genomes analysis pipeline. Bioinformatics28:416–418 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001217
Loading
/content/journal/ijsem/10.1099/ijsem.0.001217
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error