1887

Abstract

A Gram-stain-negative, pseudo-rod, non-spore-forming, oxidase- and catalase-positive, strictly aerobic bacterium, designated Gsoil 221, was isolated from soil of a ginseng field and subjected to a taxonomic analysis using a polyphasic approach. Strain Gsoil 221 grew at 10–37 °C and at pH 5.0–8.0 on R2A medium. Strain Gsoil 221 possessed β-glucosidase activity, which was responsible for its ability to transform ginsenosides Rb1 and Rc (two dominant active components of ginseng) to ginsenoside F2. Phylogenetic study based on the 16S rRNA gene sequence positioned strain Gsoil 221 in a distinct lineage in the family Chitinophagaceae , sharing less than 94.4 % 16S rRNA gene sequence similarity with all taxa with validly published names. The strain showed the highest sequence similarities with members of the genera Parasegetibacter, Flavitalea, Niastella and Terrimonas . Strain Gsoil 221 contained MK-7 as predominant quinone, and iso-C15 : 0, iso-C17 : 0 3-OH and iso-C15 : 1 G as major fatty acids. The DNA G+C content was 47.1 mol%. Strain Gsoil 221 could be distinguished from the other members of the family Chitinophagaceae by a number of chemotaxonomic and phenotypic characteristics. The major polar lipids of strain Gsoil 221 were diphosphatidylglycerol, phosphatidylethanolamine and one unidentified polar lipid. Based on these combined data, strain Gsoil 221 represents a novel species of a new genus in the family Chitinophagaceae, for which the name Pseudobacter ginsenosidimutans gen. nov., sp. nov. is proposed. The type strain of the type species is Gsoil 221 (=KACC 14278=DSM 18116).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001216
2016-09-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3449.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001216&mimeType=html&fmt=ahah

References

  1. Albert R. A., Zitomer D., Dollhopf M., Schauer-Gimenez A. E., Struble C., King M., Son S., Langer S., Busse H.-J..( 2014;). Proposal of Vibrionimonas magnilacihabitans gen. nov., sp. nov., a curved Gram-stain-negative bacterium isolated from lake water. . Int J Syst Evol Microbiol 64: 613–620. [CrossRef] [PubMed]
    [Google Scholar]
  2. An D. S., Lee H. G., Im W. T., Liu Q. M., Lee S. T..( 2007;). Segetibacter koreensis gen. nov., sp. nov., a novel member of the phylum Bacteroidetes, isolated from the soil of a ginseng field in South Korea. . Int J Syst Evol Microbiol 57: 1828–1833. [CrossRef] [PubMed]
    [Google Scholar]
  3. Anders H., Dunfield P. F., Lagutin K., Houghton K. M., Power J. F., Mackenzie A. D., Vyssotski M., Ryan J. L. J., Hanssen E. G. et al.( 2014;). Thermoflavifilum aggregans gen. nov., sp. nov., a thermophilic and slightly halophilic filamentous bacterium from the phylum Bacteroidetes. . Int J Syst Evol Microbiol 64: 1264–1270. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bowman J. P., McCammon S. A., Brown J. L., Nichols P. D., McMeekin T. A..( 1997;). Psychroserpens burtonensis gen. nov., sp. nov., and Gelidibacter algens gen. nov., sp. nov., psychrophilic bacteria isolated from antarctic lacustrine and sea ice habitats. . Int J Syst Bacteriol 47: 670–677. [CrossRef] [PubMed]
    [Google Scholar]
  5. Eder W., Peplies J., Wanner G., Frühling A., Verbarg S..( 2015;). Hydrobacter penzbergensis gen. nov., sp. nov., isolated from purified water. . Int J Syst Evol Microbiol 65: 920–926. [CrossRef] [PubMed]
    [Google Scholar]
  6. Fautz E., Reichenbach H..( 1980;). A simple test for flexirubin-type pigments. . FEMS Microbiol Letters 8: 87–91. [CrossRef]
    [Google Scholar]
  7. Felsenstein J..( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39: 783–791. [CrossRef]
    [Google Scholar]
  8. Fitch W. M..( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20: 406–416. [CrossRef]
    [Google Scholar]
  9. Glaeser S. P., Galatis H., Martin K., Kämpfer P..( 2013;). Niabella hirudinis and Niabella drilacis sp. nov., isolated from the medicinal leech Hirudo verbana. . Int J Syst Evol Microbiol 63: 3487–3493. [CrossRef] [PubMed]
    [Google Scholar]
  10. Hall T. A..( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41: 95–98.
    [Google Scholar]
  11. Hanada S., Tamaki H., Nakamura K., Kamagata Y..( 2014;). Crenotalea thermophila gen. nov., sp. nov., a member of the family Chitinophagaceae isolated from a hot spring. . Int J Syst Evol Microbiol 64: 1359–1364. [CrossRef] [PubMed]
    [Google Scholar]
  12. Hiraishi A., Ueda Y., Ishihara J., Mori T..( 1996;). Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. . The J Gen Appl Microbiol 42: 457–469. [CrossRef]
    [Google Scholar]
  13. Kämpfer P., Young C. C., Sridhar K. R., Arun A. B., Lai W. A., Shen F. T., Rekha P. D..( 2006;). Transfer of [Flexibacter]sancti, [Flexibacter]filiformis, [Flexibacter]japonensis and [Cytophaga]arvensicola to the genus Chitinophaga and description of Chitinophaga skermanii sp. nov. . Int J Syst Evol Microbiol 56: 2223–2228. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kämpfer P., Lodders N., Falsen E..( 2011;). Hydrotalea flava gen. nov., sp. nov., a new member of the phylum Bacteroidetes and allocation of the genera Chitinophaga, Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Parasegetibacter, Terrimonas, Ferruginibacter, Filimonas and Hydrotalea to the familyChitinophagaceae fam. nov. . Int J Syst Evol Microbiol 61: 518–523. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kang H., Kim H., Joung Y., Joh K..( 2016;). Parasediminibacterium paludis gen. nov., sp. nov., isolated from wetland. . Int J Syst Evol Microbiol 66: 326–331. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kang J. Y., Chun J., Seo J. W., Kim C. H., Jahng K. Y..( 2015;). Flaviaesturariibacter amylovorans gen. nov., sp. nov., a starch-hydrolysing bacterium, isolated from estuarine water. . Int J Syst Evol Microbiol 65: 2209–2214. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kim J. K., Kang M. S., Park S. C., Kim K. M., Choi K., Yoon M. H., Im W.-T..( 2015a;). Sphingosinicella ginsenosidimutans sp. nov., with ginsenoside converting activity. . J Microbiol 53: 435–441. [CrossRef]
    [Google Scholar]
  18. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kim S.-J., Ahn J.-H., Weon H.-Y., Hong S.-B., Seok S.-J., Kwon S.-W..( 2015b;). Parasegetibacter terrae sp. nov., isolated from paddy soil and emended description of the genus Parasegetibacter. . Int J Syst Evol Microbiol 65: 113–116. [CrossRef]
    [Google Scholar]
  20. Kimura M..( 1983;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;.[CrossRef]
    [Google Scholar]
  21. Leandro T., França L., Nobre M. F., Rainey F. A., Da Costa M. S..( 2013;). Heliimonas saccharivorans gen. nov., sp. nov., a member of the family Chitinophagaceae isolated from a mineral water aquifer, and emended description of Filimonas lacunae. . Int J Syst Evol Microbiol 63: 3793–3799. [CrossRef] [PubMed]
    [Google Scholar]
  22. Lee D. G., Park J. M., Kang H., Hong S. Y., Lee K. R., Chang H. B., Trujillo M. E..( 2013;). Asinibacterium lactis gen. nov., sp. nov., a member of the family Chitinophagaceae, isolated from donkey (Equus asinus) milk. . Int J Syst Evol Microbiol 63: 3180–3185. [CrossRef] [PubMed]
    [Google Scholar]
  23. Madhaiyan M., Poonguzhali S., Senthilkumar M., Pragatheswari D., Lee J. S., Lee K. C..( 2015;). Arachidicoccus rhizosphaerae gen. nov., sp. nov., a plant-growth-promoting bacterium in the family Chitinophagaceae isolated from rhizosphere soil. . Int J Syst Evol Microbiol 65: 578–586. [CrossRef] [PubMed]
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. B..( 1989;). Precise measurement of the G+C Content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39: 159–167. [CrossRef]
    [Google Scholar]
  25. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H..( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Meth 2: 233–241. [CrossRef]
    [Google Scholar]
  26. Moore D. D., Dowhan D..( 1995;). Preparation and analysis of DNA. . In Current Protocols in Molecular Biology , pp. 2–11. Edited by Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. New York:: Wiley;.
    [Google Scholar]
  27. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.
    [Google Scholar]
  28. Sangkhobol V., Skerman V. B. D..( 1981;). Chitinophaga, a new genus of chitinolytic myxobacteria. . Int J Syst Bacteriol 31: 285–293. [CrossRef]
    [Google Scholar]
  29. Sasser M..( 1990;). Identification of bacteria through fatty acid analysis. . In Methods in Phytobacteriology, pp. 199–204. Edited by Klement Z., Rudolph K., Sands D. C.. Budapest:: Akademiai Kaido;.
    [Google Scholar]
  30. Schmidt M., Priemé A., Stougaard P..( 2006;). Bacterial diversity in permanently cold and alkaline ikaite columns from Greenland. . Extremophiles 10: 551–562. [CrossRef] [PubMed]
    [Google Scholar]
  31. Smibert R. M., Krieg N. R..( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–655. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  32. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). MEGA6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  33. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G..( 1997;). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25: 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  34. Wang Y., Cai F., Tang Y., Dai J., Qi H., Rahman E., Peng F., Fang C..( 2011;). Flavitalea populi gen. nov., sp. nov., isolated from soil of a Euphrates poplar (Populus euphratica) forest. . Int J Syst Evol Microbiol 61: 1554–1560. [CrossRef] [PubMed]
    [Google Scholar]
  35. Wang Y. X., Liu J. H., Xiao W., Zhang X. X., Li Y. Q., Lai Y. H., Ji K. Y., Wen M. L., Cui X. L..( 2012;). Fodinibius salinus gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt mine. . Int J Syst Evol Microbiol 62: 390–396. [CrossRef] [PubMed]
    [Google Scholar]
  36. Wang Y. X., Liu J. H., Xiao W., Ma X. L., Lai Y. H., Li Z. Y., Ji K. Y., Wen M. L., Cui X. L..( 2013;). Aliifodinibius roseus gen. nov., sp. nov., and Aliifodinibius sediminis sp. nov., two moderately halophilic bacteria isolated from salt mine samples. . Int J Syst Evol Microbiol 63: 2907–2913. [CrossRef] [PubMed]
    [Google Scholar]
  37. Weon H. Y., Kim B. Y., Yoo S. H., Lee S. Y., Kwon S. W., Go S. J., Stackebrandt E..( 2006;). Niastella koreensis gen. nov., sp. nov. and Niastella yeongjuensis sp. nov., novel members of the phylum Bacteroidetes, isolated from soil cultivated with Korean ginseng. . Int J Syst Evol Microbiol 56: 1777–1782. [CrossRef] [PubMed]
    [Google Scholar]
  38. Weon H. Y., Kwon S. W., Son J. A., Kim S. J., Kim Y. S., Kim B. Y., Ka J. O..( 2010;). Adhaeribacter aerophilus sp. nov., Adhaeribacter aerolatus sp. nov. and Segetibacter aerophilus sp. nov., isolated from air samples. . Int J Syst Evol Microbiol 60: 2424–2429. [CrossRef] [PubMed]
    [Google Scholar]
  39. Xie C. H., Yokota A..( 2006;). Reclassification of [Flavobacterium] ferrugineum as Terrimonas ferruginea gen. nov., comb. nov., and description of Terrimonas lutea sp. nov., isolated from soil. . Int J Syst Evol Microbiol 56: 1117–1121. [CrossRef] [PubMed]
    [Google Scholar]
  40. Young K. D..( 2007;). Bacterial morphology: why have different shapes?. Curr Opin Microbiol 10: 596–600. [CrossRef] [PubMed]
    [Google Scholar]
  41. Zhang K., Tang Y., Zhang L., Dai J., Wang Y., Luo X., Liu M., Luo G., Fang C..( 2009;). Parasegetibacter luojiensis gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from a forest soil. . Int J Syst Evol Microbiol 59: 3058–3062. [CrossRef] [PubMed]
    [Google Scholar]
  42. Zhang K., Wang Y., Tang Y., Dai J., Zhang L., An H., Luo G., Rahman E., Fang C..( 2010;). Niastella populi sp. nov., isolated from soil of Euphrates poplar (Populus euphratica) forest, and emended description of the genus Niastella. . Int J Syst Evol Microbiol 60: 542–545. [CrossRef] [PubMed]
    [Google Scholar]
  43. Zhang L., Qin B., Jia Z., Wei G..( 2013;). Flavitalea gansuensis sp. nov., isolated from soil from an arid area, and emended descriptions of the genusFlavitalea and Flavitalea populi. . Int J Syst Evol Microbiol 63: 490–495. [CrossRef] [PubMed]
    [Google Scholar]
  44. Zhao R., Chen X. Y., Li X. D., Tian Y., Kong B. H., Chen Z. L., Li Y. H..( 2014;). Cnuella takakiae gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from Takakia lepidozioides. . Int J Syst Evol Microbiol 64: 607–612. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001216
Loading
/content/journal/ijsem/10.1099/ijsem.0.001216
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error