1887

Abstract

A Gram-staining-positive, aerobic, motile, rod-shaped (0.4–0.5×2.0–4.0 µm), endospore-forming bacterium, designated strain NIOT.bflm.S4, was isolated from biofilm formed on high-density polyethylene test coupons in coastal seawater. The strain required seawater for growth. It grew with 1.0–8.0 % (w/v) NaCl, at 4–45 °C and at pH 6.5–9.0, with optimum growth with 4.0–5.0 % (w/v) NaCl, at 30 °C and at pH 7.0–8.0. Phylogenetic analyses based on 16S rRNA and partial dnaK gene sequences showed that strain NIOT.bflm.S4 formed a phylogenetic lineage with Pseudogracilibacillus auburnensis P-207, the only known species of the genus Pseudogracilibacillus and shared sequence identities of 96.9 and 83 %, respectively, with this strain. The identities of 16S rRNA and partial dnaK gene sequences with members of other related genera such as Gracilibacillus , Paraliobacillus , Ornithinibacillus , Oceanobacillus , Virgibacillus and Lentibacillus were ≤95 and ≤78 %, respectively. The DNA G+C content of strain NIOT.bflm.S4 was 39.1 mol%. MK-7 was found as the sole isoprenoid quinone. The major polar lipids of strain NIOT.bflm.S4 were diphosphatidylglycerol, phosphatidylethanolamine and an unknown lipid. The diagnostic diamino acid of the cell-wall peptidoglycan was meso-diaminopimelic acid. Major cellular fatty acids were anteiso-C15 : 0 (27.9 %), anteiso-C17 : 0 (18.6 %), C12 : 0 (8.7 %) and iso-C15 : 0 (6.6 %). On the basis of phenotypic, phylogenetic and chemotaxonomic results, we propose that the isolate represents a novel species of the genus Pseudogracilibacillus , for which the name Pseudogracilibacillus marinus sp. nov. is proposed. The type strain is NIOT.bflm.S4 (=KACC 18456=MTCC 12376=TBRC 5831).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001212
2016-09-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3443.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001212&mimeType=html&fmt=ahah

References

  1. Gerhardt, Murray R. G. E., Wood W. A., Krieg N. R..(editors)( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  2. Glaeser S. P., McInroy J. A., Busse H. J., Kämpfer P..( 2014;). Pseudogracilibacillus auburnensis gen. nov., sp. nov., isolated from the rhizosphere of Zea mays. . Int J Syst Evol Microbiol 64: 2442–2448. [CrossRef] [PubMed]
    [Google Scholar]
  3. Gonzalez J. M., Saiz-Jimenez C..( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4: 770–773.[PubMed] [CrossRef]
    [Google Scholar]
  4. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  5. Komagata K., Suzuki K..( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19: 161–208.[CrossRef]
    [Google Scholar]
  6. Mandic-Mulec I., Stefanic P., van Elsas J..( 2015;). Ecology of Bacillaceae. . Microbiol Spectrum 3: TBS-0017-2013.
    [Google Scholar]
  7. Marmur J..( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3: 208–218. [CrossRef]
    [Google Scholar]
  8. McWilliam H., Li W., Uludag M., Squizzato S., Park Y. M., Buso N., Cowley A. P., Lopez R..( 2013;). Analysis tool web services from the EMBL-EBI. . Nucleic Acids Res 41: W597–W600. [CrossRef] [PubMed]
    [Google Scholar]
  9. Mesbah N. M., Whitman W. B., Mesbah M..( 2011;). Determination of the G+C content of prokaryotes. . In Taxonomy of Prokaryotes, pp. 299–324. Edited by Rainey F., Oren A.. Waltham, MA:: Academic Press;.[CrossRef]
    [Google Scholar]
  10. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M..( 1977;). Polar lipid composition in the classification of Nocardia and related bacteria. . Int J Syst Bacteriol 27: 104–117. [CrossRef]
    [Google Scholar]
  11. Schleifer K. H..( 2009;). Classification of bacteria and Archaea: past, present and future. . Syst Appl Microbiol 32: 533–542. [CrossRef] [PubMed]
    [Google Scholar]
  12. Schumann P..( 2011;). Peptidoglycan structure. . In Taxonomy of Prokaryotes (Methods in Microbiology),vol. 38pp.101–129. Edited by Rainey F. A., Oren. A.. Academic Press;.[CrossRef]
    [Google Scholar]
  13. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  14. Thies F. L., Weishaupt A., Karch H., Hartung H. P., Giegerich G..( 1999;). Cloning, sequencing and molecular analysis of the Campylobacter jejuni groESL bicistronic operon. . Microbiology 145: 89–98. [CrossRef] [PubMed]
    [Google Scholar]
  15. Verma P., Pandey P. K., Gupta A. K., Kim H. J., Baik K. S., Seong C. N., Patole M. S., Shouche Y. S..( 2011;). Shewanella indica sp. nov., isolated from sediment of the Arabian Sea. . Int J Syst Evol Microbiol 61: 2058–2064. [CrossRef] [PubMed]
    [Google Scholar]
  16. Yamamoto S., Harayama S..( 1998;). Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. . Int J Syst Bacteriol 48: 813–819. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001212
Loading
/content/journal/ijsem/10.1099/ijsem.0.001212
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error