1887

Abstract

A Gram-reaction-positive, aerobic, non-motile, irregular coccoid strain, designated YIM 7505, was isolated from a leaf of Sweet Basil. Phylogenetic analysis on the basis of 16S rRNA gene sequence comparisons revealed that strain YIM 7505 was closely related to NBRC 107580 (98.9 % 16S rRNA gene sequence similarity) and formed a robust clade with NBRC 107580 in the neighbour-joining tree. Optimum growth of strain YIM 7505 was observed at 28–35 °C, pH 7.0 and in the presence of 0–3.0 % NaCl (w/v). The chemotaxonomic profiles of the strain comprised of anteiso-C as the major cellular fatty acid and MK-8(H4) as the respiratory menaquinone. The peptidoglycan of strain YIM 7505 contained serine, alanine, glycine, glutamic acid and lysine. The polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, six unidentified phospholipids, four unidentified glycolipids, an unidentified aminolipid and an unidentified aminophospholipid. The G+C contents of the genomic DNA of strain YIM 7505 was 66.7 mol%. DNA–DNA hybridizations of strain YIM 7505 with NBRC 107580 gave relatedness values of 50.6±2.2 %. On the basis of the data recorded from the present study, strain YIM 7505 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is YIM 7505 (=KCTC 39536=CGMCC 1.15085).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001211
2016-09-01
2020-04-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3388.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001211&mimeType=html&fmt=ahah

References

  1. Anzai K., Sugiyama T., Sukisaki M., Sakiyama Y., Otoguro M., Ando K.. 2011; Flexivirga alba gen. nov., sp. nov., an actinobacterial taxon in the family Dermacoccaceae. J Antibiot64:613–616 [CrossRef][PubMed]
    [Google Scholar]
  2. Buck J. D.. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol44:992–993[PubMed]
    [Google Scholar]
  3. Christensen H., Angen O., Mutters R., Olsen J. E., Bisgaard M.. 2000; DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol50:1095–1102 [CrossRef][PubMed]
    [Google Scholar]
  4. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  5. Embley T. M., Wait R.. 1994; Structural lipids of eubacteria. In Chemical Methods in Prokaryotic Systematics pp121–161 Edited by Goodfellow M., Donnell A. G. O.. Chichester: Wiley;
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229[CrossRef]
    [Google Scholar]
  7. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376[PubMed][CrossRef]
    [Google Scholar]
  8. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  9. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416[CrossRef]
    [Google Scholar]
  10. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H.-N.. 1974; Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol24:54–63[CrossRef]
    [Google Scholar]
  11. Groth I., Rodríguez C., Schütze B., Schmitz P., Leistner E., Goodfellow M.. 2004; Five novel Kitasatospora species from soil: Kitasatospora arboriphila sp. nov., K. gansuensis sp. nov., K. nipponensis sp. nov., K. paranensis sp. nov. and K. terrestris sp. nov. Int J Syst Evol Microbiol54:2121–2129 [CrossRef][PubMed]
    [Google Scholar]
  12. Hasegawa T., Takizawa M., Tanida S.. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Microbiol29:319–322[CrossRef]
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  14. Kimura M.. 1983; The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;[CrossRef]
    [Google Scholar]
  15. Leifson E.. 1960; Atlas of Bacterial Flagellation London: Academic Press;[CrossRef]
    [Google Scholar]
  16. Li W. J., Xu P., Schumann P., Zhang Y. Q., Pukall R., Xu L. H., Stackebrandt E., Jiang C. L.. 2007; Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  17. Li J., Zhao G. Z., Chen H. H., Wang H. B., Qin S., Zhu W. Y., Xu L. H., Jiang C. L., Li W. J.. 2008; Antitumour and antimicrobial activities of endophytic streptomycetes from pharmaceutical plants in rainforest. Lett Appl Microbiol47:574–580 [CrossRef][PubMed]
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol39:159–167[CrossRef]
    [Google Scholar]
  19. Misaghi I. J., Donndelinger C. R.. 1990; Endophytic bacteria in symptom-free cotton plants. Phytopathol80:808–811 [CrossRef]
    [Google Scholar]
  20. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  21. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp.607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Stackebrandt E., Goebel B. M.. 1994; Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol44:846–849 [CrossRef]
    [Google Scholar]
  23. Tamaoka J., Katayama-Fujimura Y., Kuraishi H.. 1983; Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol54:31–36[CrossRef]
    [Google Scholar]
  24. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  25. Tang S. K., Wang Y., Chen Y., Lou K., Cao L. L., Xu L. H., Li W. J.. 2009; Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol59:2025–2033 [CrossRef][PubMed]
    [Google Scholar]
  26. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001211
Loading
/content/journal/ijsem/10.1099/ijsem.0.001211
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error