1887

Abstract

A Gram-stain-negative, non-motile, deep yellow, rod-shaped bacterium, designated strain LCS9, was isolated from a soil sample at the tropical zone within the Ecorium of the National Institute of Ecology in Seocheon, central-western Korea. 16S rRNA gene sequence analysis showed that strain LCS9 clustered with members of the genus of the family , phylum . Sequence similarities between strain LCS9 and the type strains of the genus ranged from 94.6 to 94.9 %. Strain LCS9 grew at 10–37 °C (optimum, 25 °C) and at pH 6.0–10.0 (optimum, pH 7); was positive for catalase and oxidase; and negative for nitrate reduction and production of indole. Cells showed pigment absorbance peaks at 451 and 479 nm, and had 0.03 % survival following exposure to 3 kGy gamma radiation. Strain LCS9 had the following chemotaxonomic characteristics: the major quinone was menaquinone-7 (MK-7); the major fatty acids were iso-C and iso-C 3-OH; polar lipids included phosphoatidylethanolamine, an unidentified aminophospholipid, unidentified aminolipidsand unidentified lipids. The DNA G+C content was 39.4 mol%. Based on polyphasic analysis, the type strain LCS9 (=KCTC 42070=JCM 19972) represents a novel species for which the name sp. nov. is proposed. Radiation resistance in the genus has not been reported to date, and so this is the first report of low-level radiation resistance of a member of the genus.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001207
2016-09-01
2020-09-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3413.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001207&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  2. Baik K. S., Kim M. S., Lee J. H., Lee S. S., Im W. T., Seong C. N.. 2014; Flavisolibacter rigui sp. nov., isolated from freshwater of an artificial reservoir and emended description of the genus Flavisolibacter. Int J Syst Evol Microbiol64:4038–4042 [CrossRef][PubMed]
    [Google Scholar]
  3. Cappuccino J. G., Sherman N.. 2010; Microbiology:A Laboratory Manual , 9th edn. pp. 69–74 & 161–164. San Francisco, CA: Benjamin Cummings;
    [Google Scholar]
  4. Edgar R. C.. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. 1985; Confidence limits on Phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  7. Frank J. A., Reich C. I., Sharma S., Weisbaum J. S., Wilson B. A., Olsen G. J.. 2008; Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol74:2461–2470 [CrossRef][PubMed]
    [Google Scholar]
  8. Gosink J. J., Woese C. R., Staley J. T.. 1998; Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of ‘Flectobacillus glomeratus’ as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol48:223–235 [CrossRef][PubMed]
    [Google Scholar]
  9. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser41:95–98
    [Google Scholar]
  10. Hiraishi A., Ueda Y., Ishihara J., Mori T.. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol42:457–469 [CrossRef]
    [Google Scholar]
  11. Im W. T., Jung H. M., Ten L. N., Kim M. K., Bora N., Goodfellow M., Lim S., Jung J., Lee S. T.. 2008; Deinococcus aquaticus sp. nov., isolated from fresh water, and Deinococcus caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol58:2348–2353 [CrossRef][PubMed]
    [Google Scholar]
  12. Joo E. S., Cha S., Kim M. K., Jheong W., Seo T., Srinivasan S.. 2015; Flavisolibacter swuensis sp. nov. isolated from soil. J Microbiol53:442–447 [CrossRef][PubMed]
    [Google Scholar]
  13. Kim M. K., Srinivasan S., Back C. G., Joo E. S., Lee S. Y., Jung H. Y.. 2015; Complete genome sequence of Deinococcus swuensis, a bacterium resistant to radiation toxicity. Mol Cell Toxicol11:315–321 [CrossRef]
    [Google Scholar]
  14. Kimura M., Takahata N.. 1983; Selective constraint in protein polymorphism: study of the effectively neutral mutation model by using an improved pseudosampling method. Natl Acad Sci USA80:1048–1052 [CrossRef]
    [Google Scholar]
  15. Komagata K., Suzuki K.. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol19:1–207
    [Google Scholar]
  16. Lee S. G., Yoon H. S., Bae H., Ha J., Pak H., Shin Y., Son S. W.. 2014; Implication of ultraviolet B radiation exposure for non-melanoma skin cancer in Korea. Mol Cell Toxicol 10:91–94 [CrossRef]
    [Google Scholar]
  17. Lee J. J., Srinivasan S., Lim S., Joe M., Im S., Kim M. K.. 2015; Deinococcus puniceus sp. nov., a bacterium isolated from soil-irradiated gamma radiation. Curr Microbiol70:464–469 [CrossRef][PubMed]
    [Google Scholar]
  18. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol3:208–218 [CrossRef]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  20. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M.. 1977; Polar lipid composition in the classification of N ocardia and related bacteria. Int J Syst Bacteriol27:104–117 [CrossRef]
    [Google Scholar]
  21. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth2:233–241 [CrossRef]
    [Google Scholar]
  22. Murray M. G., Thompson W. F.. 1980; Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res8:4321–4326 [CrossRef][PubMed]
    [Google Scholar]
  23. Rainey F. A., Ray K., Ferreira M., Gatz B. Z., Nobre M. F., Bagaley D., Rash B. A., Park M. J., Earl A. M. et al. 2005; Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol71:5225–5235 [CrossRef][PubMed]
    [Google Scholar]
  24. Rzhetsky A., Nei M.. 1992; A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol9:945–967
    [Google Scholar]
  25. Saitou N., Nei M.. 1987; The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Bio Evol4:406–425
    [Google Scholar]
  26. Sasser M.. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101.. Newark: DE: MIDI Inc;
  27. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology , pp.611–651 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  28. Son Y., Bae M. J., Lee C. G., Jo W. S., Kim S. D., Yang K., Jang H., Kim J. S.. 2014; Treatment with granulocyte colony-stimulating factor aggravates thrombocytopenia in irradiated mice. Mol Cell Toxicol10:311–317 [CrossRef]
    [Google Scholar]
  29. Srinivasan S., Kim M. K., Joo E. S., Lee S. Y., Lee D. S., Jung H. Y.. 2015; Complete genome sequence of Rufibacter sp. DG31D, a bacterium resistant to gamma and UV radiation toxicity. Mol Cell Toxicol11:415–421 [CrossRef]
    [Google Scholar]
  30. Swindell S. R., Plasterer T. N. 1997; SEQMAN. In Sequence Data Analysis Guidebook pp.75–89 Springer;[CrossRef]
    [Google Scholar]
  31. Tamaoka J., Komagata K.. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett25:125–128 [CrossRef]
    [Google Scholar]
  32. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  33. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703[PubMed]
    [Google Scholar]
  34. Yoon M. H., Im W. T.. 2007; Flavisolibacter ginsengiterrae gen. nov., sp. nov. and Flavisolibacter ginsengisoli sp. nov., isolated from ginseng cultivating soil. Int J Syst Evol Microbiol57:1834–1839 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001207
Loading
/content/journal/ijsem/10.1099/ijsem.0.001207
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error