1887

Abstract

A Gram-stain-negative, facultatively anaerobic, rod-shaped and motile strain, designated PAMC 28425, was isolated from a sea surface microlayer sample from the Ross Sea, Antarctica. Analysis of the 16S rRNA gene sequence of strain PAMC 28425 showed an affiliation with the genus . Phylogenetic analyses revealed that strain PAMC 28425 formed a clade with MB8-11 and KMM 3635 with 16S rRNA gene sequence similarities of 98.3–98.6 %. Genomic relatedness analyses based on the average nucleotide identity and the genome-to-genome distance showed that strain PAMC 28425 is clearly distinguished from the phylogenetically close relatives. Cells of strain PAMC 28425 grew optimally at 25 °C and pH 7.5–8.5 in the presence of 1.0–3.0 % (w/v) sea salts. The major cellular fatty acids (>10 %) were Cω6 and/or Cω7, C, and Cω6 and/or Cω7. The genomic DNA G+C content was 39.7 mol%. On the basis of the phylogenetic, genomic, chemotaxonomic and phenotypic data presented, we propose the name sp. nov. with the type strain PAMC 28425 (=KCCM 43187=JCM 31286).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001202
2016-09-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3377.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001202&mimeType=html&fmt=ahah

References

  1. Akagawa-Matsushita M., Matsuo M., Koga Y., Yamasato K.. 1992; Alteromonas atlantica sp. nov. and Alteromonas carrageenovora sp. nov., Bacteria that decompose algal polysaccharides. Int J Syst Bacteriol42:621–627 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  3. Auch A. F., von Jan M., Klenk H. P., Göker M.. 2010; Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  4. Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., Nikolenko S. I., Pham S. et al. 2012; SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  5. Baumann P., Baumann L., Bowditch R. D., Beaman B.. 1984; Taxonomy of Alteromonas: A. nigrifaciens sp. nov., nom. rev.; A. haloplanktis. Int J Syst Bacteriol34:145–149 [CrossRef]
    [Google Scholar]
  6. Bowman J. P.. 1998; Pseudoalteromonas prydzensis sp. nov., a psychrotrophic, halotolerant bacterium form Antarctic sea ice. Int J Syst Bacteriol48:1037–1041 [CrossRef][PubMed]
    [Google Scholar]
  7. Bowman J. P., McMeekin T. A.. 2005; Genus XI. Pseudoalteromonas Gauthier, Gauthier and Christen 1995a, 759VP. In Bergey’s Manual of Systematic Bacteriology, 2nd edn.vol. 2B , pp.467–478 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M.. New York: Springer;
    [Google Scholar]
  8. Bruns A., Rohde M., Berthe-Corti L.. 2001; Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol51:1997–2006 [CrossRef][PubMed]
    [Google Scholar]
  9. Cappuccino J. G., Sherman N.. 2002; Microbiology: A Laboratory Manual, 6th edn. Menlo Park, CA: Benjamin/Cummings;
    [Google Scholar]
  10. Chan K. Y., Baumann L., Garza M. M., Baumann P.. 1978; Two new species of Alteromonas: Alteromonas espejiana and Alteromonas undina. Int J Syst Bacteriol28:217–222[CrossRef]
    [Google Scholar]
  11. Cole J. R., Wang Q., Fish J. A., Chai B., McGarrell D. M., Sun Y., Brown C. T., Porras-Alfaro A., Kuske C. R. et al. 2014; Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res41:D633–D642 [CrossRef]
    [Google Scholar]
  12. Cui Z., Lai Q., Dong C., Shao Z.. 2008; Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge. Environ Microbiol10:2138–2149 [CrossRef][PubMed]
    [Google Scholar]
  13. Cunliffe M., Murrell J. C.. 2009; The sea-surface microlayer is a gelatinous biofilm. ISME J3:1001–1003 [CrossRef][PubMed]
    [Google Scholar]
  14. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376[PubMed][CrossRef]
    [Google Scholar]
  15. Gauthier G., Gauthier M., Christen R.. 1995; Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol45:755–761 [CrossRef][PubMed]
    [Google Scholar]
  16. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. 2007; DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  17. Hansen G. H., Sørheim R.. 1991; Improved method for phenotypical characterization of marine bacteria. J Microbiol Meth13:231–241[CrossRef]
    [Google Scholar]
  18. Harvey G. W.. 1966; Microlayer collection from the sea surface: a new method and initial results. Limnol Oceanogr11:608–614 [CrossRef]
    [Google Scholar]
  19. Holmström C., James S., Neilan B. A., White D. C., Kjelleberg S.. 1998; Pseudoalteromonas tunicata sp. nov., a bacterium that produces antifouling agents. Int J Syst Bacteriol48:1205–1212 [CrossRef][PubMed]
    [Google Scholar]
  20. Hwang C. Y., Cho B. C.. 2008; Cohaesibacter gelatinilyticus gen. nov., sp. nov., a marine bacterium that forms a distinct branch in the orderRhizobiales, and proposal ofCohaesibacteraceae fam. nov. Int J Syst Evol Microbiol58:267–277 [CrossRef][PubMed]
    [Google Scholar]
  21. Hwang C. Y., Kim M. H., Bae G. D., Zhang G. I., Kim Y. H., Cho B. C.. 2009; Muricauda olearia sp. nov., isolated from crude-oil-contaminated seawater, and emended description of the genusMuricauda. Int J Syst Evol Microbiol59:1856–1861 [CrossRef][PubMed]
    [Google Scholar]
  22. Hwang C. Y., Lee I., Cho Y., Lee Y. M., Baek K., Jung Y. J., Yang Y. Y., Lee T., Rhee T. S. et al. 2015; Rhodococcus aerolatus sp. nov., isolated from subarctic rainwater. Int J Syst Evol Microbiol65:465–471 [CrossRef][PubMed]
    [Google Scholar]
  23. Ivanova E. P., Sawabe T., Lysenko A. M., Gorshkova N. M., Hayashi K., Zhukova N. V., Nicolau D. V., Christen R., Mikhailov V. V.. 2002; Pseudoalteromonas translucida sp. nov. andPseudoalteromonas paragorgicola sp. nov., and emended description of the genus. Int J Syst Evol Microbiol52:1759–1766 [CrossRef][PubMed]
    [Google Scholar]
  24. Jukes T. H., Cantor C. R.. 1969; Evolution of protein molecules. In Mammalian Protein Metabolismvol. 3, pp.21–132 Edited by Munro H. N.. New York: Academic Press;[CrossRef]
    [Google Scholar]
  25. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  26. Oh Y. S., Park A. R., Lee J. K., Lim C. S., Yoo J. S., Roh D. H.. 2011; Pseudoalteromonas donghaensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol61:351–355 [CrossRef][PubMed]
    [Google Scholar]
  27. Park S., Jung Y. T., Park D. S., Yoon J. H.. 2016; Pseudoalteromonas aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol66:2078–2083 [CrossRef][PubMed]
    [Google Scholar]
  28. Richter M., Rosselló-Móra R.. 2009; Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  29. Romanenko L. A., Zhukova N. V., Lysenko A. M., Mikhailov V. V., Stackebrandt E.. 2003; Assignment of 'Alteromonas marinoglutinosa' NCIMB 1770 to Pseudoalteromonas mariniglutinosa sp. nov., nom. rev., comb. nov. Int J Syst Evol Microbiol53:1105–1109 [CrossRef][PubMed]
    [Google Scholar]
  30. Rosselló-Mora R., Amann R.. 2001; The species concept for prokaryotes. FEMS Microbiol Rev25:39–67[PubMed][CrossRef]
    [Google Scholar]
  31. Rzhetsky A., Nei M.. 1992; A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol9:945–967
    [Google Scholar]
  32. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  33. Skerman V. B. D.. 1967; A Guide to the Identification of the Genera of Bacteria, 2nd edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  34. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology , pp.607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  35. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  36. Wietz M., Gram L., Jørgensen B., Schramm A.. 2010; Latitudinal patterns in the abundance of major marine bacterioplankton groups. Aquat Microb Ecol61:179–189[CrossRef]
    [Google Scholar]
  37. Ying Y., Tian X. X., Wang J. J., Qu L. Y., Li J.. 2016; Pseudoalteromonas fenneropenaei sp. nov., a marine bacterium isolated from sediment of Fenneropenaeus chinensis farming pond. Int J Syst Evol Microbiol [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001202
Loading
/content/journal/ijsem/10.1099/ijsem.0.001202
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error