1887

Abstract

Four yellow-pigmented, Gram-stain-negative, rod-shaped bacteria, strains PP-WC-4G-234, PP-CE-2G-454, PP-WC-1G-202 and PP-CC-3G-650, were isolated from the phyllosphere of The strains shared 99.7–100 % 16S rRNA gene sequence similarity but could be differentiated by genomic fingerprinting using rep- and random amplification of polymorphic DNA PCRs. Phylogenetic analysis based on the 16S rRNA gene placed the strains within the family with highest 16S rRNA gene sequence similarity of 97.2–97.3 % to the type strain of Sequence similarities to all other were below 97 %. The main cellular fatty acids of the strains were C 7 as the predominant fatty acid followed by C and summed feature 3 (C 7/C 8). The polyamine patterns of strains PP-WC-4G-234 and PP-CE-2G-454 contained -homospermidine as a major compound, and the major respiratory quinone was ubiquinone Q-10. Predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, phosphatidylcholine, sulfoquinovosyldiacylglycerol, three unidentified phospholipids and one unidentified lipid only detectable after total lipid staining. The DNA G+C content was 66.4, 68.9, 67.4 and 70.5 mol% for strains PP-WC-4G-234, PP-CE-2G-454, PP-WC-1G-202 and PP-CC-3G-650, respectively. Based on phylogenetic, chemotaxonomic and phenotypic analyses we propose two novel species of the genus sp. nov. with PP-WC-4G-234 (=LMG 28655=CIP 110892) as the type strain and sp. nov. with PP-CE-2G-454 (=LMG 29411=CCM 8665) as the type strain and two further strains representing the same species, PP-WC-1G-202 and PP-CC-3G-650.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001200
2016-09-01
2022-05-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3345.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001200&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathisc A., Lubitza W., Busse H. J. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52 [View Article]
    [Google Scholar]
  2. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. 1978; Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli . J Mol Biol 148:107–127 [View Article][PubMed]
    [Google Scholar]
  3. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiology 11:1–8 [View Article]
    [Google Scholar]
  4. Busse H. J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708 [View Article]
    [Google Scholar]
  5. Cho Y., Lee I., Yang Y. Y., Baek K., Yoon S. J., Lee Y. M., Kang S. H., Lee H. K., Hwang C. Y. 2015; Aureimonas glaciistagni sp. nov., isolated from a melt pond on Arctic sea ice. Int J Syst Evol Microbiol 65:3564–3569 [View Article][PubMed]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  7. Felsenstein J. 2005; PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle:
  8. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Glaeser S. P., Falsen E., Martin K., Kämpfer P. 2013a; Alicyclobacillus consociatus sp. nov., isolated from a human clinical specimen. Int J Syst Evol Microbiol 63:3623–3527 [CrossRef]
    [Google Scholar]
  10. Glaeser S. P., Galatis H., Martin K., Kämpfer P. 2013b; Niabella hirudinis and Niabella drilacis sp. nov., isolated from the medicinal leech Hirudo verbana . Int J Syst Evol Microbiol 63:3487–3493 [View Article][PubMed]
    [Google Scholar]
  11. Gonzalez J. M., Saiz-Jimenez C. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773[PubMed] [CrossRef]
    [Google Scholar]
  12. Jones K. L. 1949; Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145
    [Google Scholar]
  13. Jukes T. H., Cantor C. R. 1969; Evolution of the protein molecules. In Mammalian Protein Metabolism pp. 21–132 Edited by Munro H. N. New York: Academic Press; [CrossRef]
    [Google Scholar]
  14. Jurado V., Gonzalez J. M., Laiz L., Saiz-Jimenez C. 2006; Aurantimonas altamirensis sp. nov., a member of the order Rhizobiales isolated from Altamira Cave. Int J Syst Evol Microbiol 56:2583–2585 [View Article][PubMed]
    [Google Scholar]
  15. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Med Technol 42:989–1005 [View Article]
    [Google Scholar]
  16. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [View Article][PubMed]
    [Google Scholar]
  17. Kim M. S., Hoa K. T., Baik K. S., Park S. C., Seong C. N. 2008; Aurantimonas frigidaquae sp. nov., isolated from a water-cooling system. Int J Syst Evol Microbiol 58:1142–1146 [View Article][PubMed]
    [Google Scholar]
  18. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  19. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  20. Lin S. Y., Hameed A., Liu Y. C., Hsu Y. H., Lai W. A., Shen F. T., Young L. S., Tsai C. F., Young C. C. 2013; Aureimonas ferruginea sp. nov. and Aureimonas rubiginis sp. nov., two siderophore-producing bacteria isolated from rusty iron plates. Int J Syst Evol Microbiol 63:2430–2435 [View Article][PubMed]
    [Google Scholar]
  21. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. 2004; ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371. [CrossRef]
    [Google Scholar]
  22. Madhaiyan M., Hu C. J., Jegan Roy J., Kim S. J., Weon H. Y., Kwon S. W., Ji L. 2013; Aureimonas jatrophae sp. nov. and Aureimonas phyllosphaerae sp. nov., leaf-associated bacteria isolated from Jatropha curcas L. Int J Syst Evol Microbiol 63:1702–1708 [View Article][PubMed]
    [Google Scholar]
  23. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156 [View Article]
    [Google Scholar]
  24. Pruesse E., Peplies J., Glöckner F. O. 2012; SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  25. Rathsack K., Reitner J., Stackebrandt E., Tindall B. J. 2011; Reclassification ofAurantimonas altamirensis (Jurado et al. 2006), Aurantimonas ureilytica (Weon et al. 2007) and Aurantimonas frigidaquae (Kim et al. 2008) as members of a new genus, Aureimonas gen. nov., as Aureimonas altamirensis gen. nov., comb. nov., Aureimonas ureilytica comb. nov. and Aureimonas frigidaquae comb. nov., and emended descriptions of the genera Aurantimonas and Fulvimarina . Int J Syst Evol Microbiol 61:2722–2728 [CrossRef]
    [Google Scholar]
  26. Reichenbach H. 1992; Flavobacteriaceae fam. nov. In validation of the publication of new names and new combinations previously effectively published outside the IJSB. Int J Syst Bacteriol 42:327–329 [CrossRef]
    [Google Scholar]
  27. Schauss T., Busse H. J., Golke J., Kämpfer P., Glaeser S. P. 2015; Empedobacter stercoris sp. nov., isolated from an input sample of a biogas plant. Int J Syst Evol Microbiol 65:3746–3753 [View Article][PubMed]
    [Google Scholar]
  28. Stamatakis A. 2006; RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690 [View Article][PubMed]
    [Google Scholar]
  29. Stolz A., Busse H.-J., Kämpfer P. 2007; Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57:572–576 [View Article][PubMed]
    [Google Scholar]
  30. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  31. Tindall B. J. 1990a; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  32. Tindall B. J. 1990b; A comparative study of the lipid composition of Halobacterium saccharovorum from Various Sources. Syst Appl Microbiol 13:128–130 [View Article]
    [Google Scholar]
  33. Versalovic J., Schneider M., de Bruijn F. J., Lupski J. R. 1994; Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40
    [Google Scholar]
  34. Weon H. Y., Kim B. Y., Yoo S. H., Joa J. H., Lee K. H., Zhang Y. S., Kwon S. W., Koo B. S. 2007; Aurantimonas ureilytica sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 57:1717–1720 [View Article][PubMed]
    [Google Scholar]
  35. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R. 2008; The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250 [View Article][PubMed]
    [Google Scholar]
  36. Ziemke F., Brettar I., Höfle M. G. 1997; Stability and diversity of the genetic structure of a Shewanella putrefaciens population in the water column of the central Baltic. Aquat Microb Ecol 13:63–74 [View Article]
    [Google Scholar]
  37. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001200
Loading
/content/journal/ijsem/10.1099/ijsem.0.001200
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error