1887

Abstract

Four yellow-pigmented, Gram-stain-negative, rod-shaped bacteria, strains PP-WC-4G-234, PP-CE-2G-454, PP-WC-1G-202 and PP-CC-3G-650, were isolated from the phyllosphere of Galium album. The strains shared 99.7–100 % 16S rRNA gene sequence similarity but could be differentiated by genomic fingerprinting using rep- and random amplification of polymorphic DNA PCRs. Phylogenetic analysis based on the 16S rRNA gene placed the strains within the family Aurantimonadaceae with highest 16S rRNA gene sequence similarity of 97.2–97.3 % to the type strain of Aureimonas phyllosphaerae. Sequence similarities to all other Aurantimonadaceae were below 97 %. The main cellular fatty acids of the strains were C18 : 1 ω7c as the predominant fatty acid followed by C16 : 0 and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω8c). The polyamine patterns of strains PP-WC-4G-234 and PP-CE-2G-454 contained sym-homospermidine as a major compound, and the major respiratory quinone was ubiquinone Q-10. Predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, phosphatidylcholine, sulfoquinovosyldiacylglycerol, three unidentified phospholipids and one unidentified lipid only detectable after total lipid staining. The DNA G+C content was 66.4, 68.9, 67.4 and 70.5 mol% for strains PP-WC-4G-234, PP-CE-2G-454, PP-WC-1G-202 and PP-CC-3G-650, respectively. Based on phylogenetic, chemotaxonomic and phenotypic analyses we propose two novel species of the genus Aureimonas, Aureimonas galii sp. nov. with PP-WC-4G-234 (=LMG 28655=CIP 110892) as the type strain and Aureimonas pseudogalii sp. nov. with PP-CE-2G-454 (=LMG 29411=CCM 8665) as the type strain and two further strains representing the same species, PP-WC-1G-202 and PP-CC-3G-650.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001200
2016-09-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3345.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001200&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathisc A., Lubitza W., Busse H. J..( 1996;). Classification of bacteria isolated from a medieval wall painting. . J Biotechnol 47: 39–52. [CrossRef]
    [Google Scholar]
  2. Brosius J., Dull T. J., Sleeter D. D., Noller H. F..( 1978;). Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. . J Mol Biol 148: 107–127. [CrossRef] [PubMed]
    [Google Scholar]
  3. Busse H.-J., Auling G..( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiology 11: 1–8. [CrossRef]
    [Google Scholar]
  4. Busse H. J., Bunka S., Hensel A., Lubitz W..( 1997;). Discrimination of members of the family pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol 47: 698–708. [CrossRef]
    [Google Scholar]
  5. Cho Y., Lee I., Yang Y. Y., Baek K., Yoon S. J., Lee Y. M., Kang S. H., Lee H. K., Hwang C. Y..( 2015;). Aureimonas glaciistagni sp. nov., isolated from a melt pond on Arctic sea ice. . Int J Syst Evol Microbiol 65: 3564–3569. [CrossRef] [PubMed]
    [Google Scholar]
  6. Felsenstein J..( 1985;). Confidence limits of phylogenies: an approach using the bootstrap. . Evolution 39: 783–791. [CrossRef]
    [Google Scholar]
  7. Felsenstein J..( 2005;). PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. . Department of Genome Sciences, University of Washington, Seattle:.
  8. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors). ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  9. Glaeser S. P., Falsen E., Martin K., Kämpfer P.( 2013a;). Alicyclobacillus consociatus sp. nov., isolated from a human clinical specimen. . Int J Syst Evol Microbiol 63: 3623–3527.[CrossRef]
    [Google Scholar]
  10. Glaeser S. P., Galatis H., Martin K., Kämpfer P..( 2013b;). Niabella hirudinis and Niabella drilacis sp. nov., isolated from the medicinal leech Hirudo verbana. . Int J Syst Evol Microbiol 63: 3487–3493. [CrossRef] [PubMed]
    [Google Scholar]
  11. Gonzalez J. M., Saiz-Jimenez C..( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4: 770–773.[PubMed] [CrossRef]
    [Google Scholar]
  12. Jones K. L..( 1949;). Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. . J Bacteriol 57: 141–145.
    [Google Scholar]
  13. Jukes T. H., Cantor C. R..( 1969;). Evolution of the protein molecules. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. N.. New York:: Academic Press;.[CrossRef]
    [Google Scholar]
  14. Jurado V., Gonzalez J. M., Laiz L., Saiz-Jimenez C..( 2006;). Aurantimonas altamirensis sp. nov., a member of the order Rhizobiales isolated from Altamira Cave. . Int J Syst Evol Microbiol 56: 2583–2585. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kämpfer P., Kroppenstedt R. M..( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Med Technol 42: 989–1005. [CrossRef]
    [Google Scholar]
  16. Kämpfer P., Steiof M., Dott W..( 1991;). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21: 227–251. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kim M. S., Hoa K. T., Baik K. S., Park S. C., Seong C. N..( 2008;). Aurantimonas frigidaquae sp. nov., isolated from a water-cooling system. . Int J Syst Evol Microbiol 58: 1142–1146. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lane D. J..( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics. Edited by Stackebrandt E., Goodfellow M.. Chichester:: Wiley;.
    [Google Scholar]
  20. Lin S. Y., Hameed A., Liu Y. C., Hsu Y. H., Lai W. A., Shen F. T., Young L. S., Tsai C. F., Young C. C..( 2013;). Aureimonas ferruginea sp. nov. and Aureimonas rubiginis sp. nov., two siderophore-producing bacteria isolated from rusty iron plates. . Int J Syst Evol Microbiol 63: 2430–2435. [CrossRef] [PubMed]
    [Google Scholar]
  21. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al.( 2004;). ARB: a software environment for sequence data. . Nucleic Acids Res 32: 1363–1371. [CrossRef]
    [Google Scholar]
  22. Madhaiyan M., Hu C. J., Jegan Roy J., Kim S. J., Weon H. Y., Kwon S. W., Ji L..( 2013;). Aureimonas jatrophae sp. nov. and Aureimonas phyllosphaerae sp. nov., leaf-associated bacteria isolated from Jatropha curcas L. . Int J Syst Evol Microbiol 63: 1702–1708. [CrossRef] [PubMed]
    [Google Scholar]
  23. Pitcher D. G., Saunders N. A., Owen R. J..( 1989;). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. . Lett Appl Microbiol 8: 151–156. [CrossRef]
    [Google Scholar]
  24. Pruesse E., Peplies J., Glöckner F. O..( 2012;). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28: 1823–1829. [CrossRef] [PubMed]
    [Google Scholar]
  25. Rathsack K., Reitner J., Stackebrandt E., Tindall B. J..( 2011;). Reclassification ofAurantimonas altamirensis (Jurado et al. 2006), Aurantimonas ureilytica (Weon et al. 2007) and Aurantimonas frigidaquae (Kim et al. 2008) as members of a new genus, Aureimonas gen. nov., as Aureimonas altamirensis gen. nov., comb. nov., Aureimonas ureilytica comb. nov. and Aureimonas frigidaquae comb. nov., and emended descriptions of the genera Aurantimonas and Fulvimarina. . Int J Syst Evol Microbiol 61: 2722–2728.[CrossRef]
    [Google Scholar]
  26. Reichenbach H..( 1992;). Flavobacteriaceae fam. nov. In validation of the publication of new names and new combinations previously effectively published outside the IJSB. . Int J Syst Bacteriol 42: 327–329.[CrossRef]
    [Google Scholar]
  27. Schauss T., Busse H. J., Golke J., Kämpfer P., Glaeser S. P..( 2015;). Empedobacter stercoris sp. nov., isolated from an input sample of a biogas plant. . Int J Syst Evol Microbiol 65: 3746–3753. [CrossRef] [PubMed]
    [Google Scholar]
  28. Stamatakis A..( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics 22: 2688–2690. [CrossRef] [PubMed]
    [Google Scholar]
  29. Stolz A., Busse H.-J., Kämpfer P..( 2007;). Pseudomonas knackmussii sp. nov. . Int J Syst Evol Microbiol 57: 572–576. [CrossRef] [PubMed]
    [Google Scholar]
  30. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S..( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28: 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  31. Tindall B. J..( 1990a;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66: 199–202. [CrossRef]
    [Google Scholar]
  32. Tindall B. J..( 1990b;). A comparative study of the lipid composition of Halobacterium saccharovorum from Various Sources. . Syst Appl Microbiol 13: 128–130. [CrossRef]
    [Google Scholar]
  33. Versalovic J., Schneider M., de Bruijn F. J., Lupski J. R..( 1994;). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. . Methods Mol Cell Biol 5: 25–40.
    [Google Scholar]
  34. Weon H. Y., Kim B. Y., Yoo S. H., Joa J. H., Lee K. H., Zhang Y. S., Kwon S. W., Koo B. S..( 2007;). Aurantimonas ureilytica sp. nov., isolated from an air sample. . Int J Syst Evol Microbiol 57: 1717–1720. [CrossRef] [PubMed]
    [Google Scholar]
  35. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R..( 2008;). The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31: 241–250. [CrossRef] [PubMed]
    [Google Scholar]
  36. Ziemke F., Brettar I., Höfle M. G..( 1997;). Stability and diversity of the genetic structure of a Shewanella putrefaciens population in the water column of the central Baltic. . Aquat Microb Ecol 13: 63–74. [CrossRef]
    [Google Scholar]
  37. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R..( 1998;). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. . Int J Syst Bacteriol 48: 179–186. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001200
Loading
/content/journal/ijsem/10.1099/ijsem.0.001200
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error