1887

Abstract

Strain TTM-46, isolated from a water sample taken from the Caohu River in Taiwan, was characterized using a polyphasic taxonomy approach. Cells of TTM-46 were Gram-staining-negative, strictly aerobic, motile by gliding, rod-shaped, surrounded by a thick capsule and formedyellowish-green colored colonies. Growth occurred at 20–30 °C (optimum, 30 °C), at pH 6–8 (optimum, pH 7) and with 0–0.3 % NaCl (optimum, 0 % w/v). Phylogenetic analyses based on 16 S rRNA gene sequences showed that TTM-46 represented a member of the genus and was most closely related to IFO 15943 and TTM-43 with a sequence similarity of 96.9 % for both. TTM-46 contained iso-C, summed feature 9 (iso-Cω9 and/or 10-methyl C), iso-C 3-OH, iso-C G, iso-C 3-OH and summed feature 3 (Cω6 and/or Cω7) as the predominant fatty acids. The major isoprenoid quinone was MK-6. The polar lipid profile consisted of phosphatidylethanolamine, four uncharacterized aminophospholipids and five uncharacterized phospholipids. The major polyamine was homospermidine. The genomic DNA G+C content of TTM-46 was 39 mol%. On the basis of the phylogenetic inference and phenotypic data, TTM-46 was recognized as a representative of a novel species within the genus . The name sp. nov. is proposed, with TTM-46 (=BCRC 80914=LMG 29005=KCTC 42745) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001198
2016-09-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3337.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001198&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kudo Y., Oyaizu H.. 1997; The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol47:249–251 [CrossRef][PubMed]
    [Google Scholar]
  2. Bergey D. H., Harrison F. C., Breed R. S., Hammer B. W., Huntoon F. M.. 1923; Genus II. Flavobacterium gen. nov. In Bergey’s Manual of Determinative Bacteriology, 1st edn. pp.97–117 Baltimore: Williams & Wilkins;
    [Google Scholar]
  3. Bernardet J.-F., Bowman J. P.. 2006; The genus Flavobacterium. In The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd edn.vol 7 , pp.481–531 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E.. New York: Springer;
    [Google Scholar]
  4. Bernardet J.-F., Bowman J. P.. 2011; Genus I. Flavobacterium Bergey et al. 1923. In Bergey’s Manual of Systematic Bacteriology, 2nd edn.vol. 4 pp112–154 Edited by Whitman W.. Baltimore: The Williams & Wilkins;
    [Google Scholar]
  5. Bernardet J. F., Nakagawa Y., Holmes B.. 2002; Proposed minimal standards for describing new taxa of the familyFlavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  6. Bowman J. P.. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol50:1861–1868 [CrossRef][PubMed]
    [Google Scholar]
  7. Breznak J. A., Costilow R. N.. 2007; Physicochemical factors in growth. In Methods for General and Molecular Bacteriology, 3rd edn. pp.309–329 Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Busse H.-J., Bunka S., Hensel A., Lubitz W.. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol47:698–708 [CrossRef]
    [Google Scholar]
  9. Busse J., Auling G.. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol11:1–8 [CrossRef]
    [Google Scholar]
  10. Chen W. M., Laevens S., Lee T. M., Coenye T., De Vos P., Mergeay M., Vandamme P.. 2001; Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol51:1729–1735 [CrossRef][PubMed]
    [Google Scholar]
  11. Chen W. M., Huang W. C., Young C. C., Sheu S. Y.. 2013; Flavobacterium tilapiae sp. nov., isolated from a freshwater pond, and emended descriptions of Flavobacterium defluvii and Flavobacterium johnsoniae. Int J Syst Evol Microbiol63:827–834 [CrossRef][PubMed]
    [Google Scholar]
  12. Sheu S. Y., Chen Y. L., Chen W. M.. 2016; Flavobacterium brevivitae sp. nov., isolated from a freshwater river. Int J Syst Evol Microbiol66:1705–1712 [CrossRef]
    [Google Scholar]
  13. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T. et al. 2009; The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res37:D141–D145 [CrossRef][PubMed]
    [Google Scholar]
  14. Collins M. D.. 1994; Isoprenoid quinones. In Chemical Methods in Prokaryotic Systematics , pp.265–309 Edited by Goodfellow M., O’Donnell A. G.. Chichester: Wiley;
    [Google Scholar]
  15. Dong K., Liu H., Zhang J., Zhou Y., Xin Y.. 2012; Flavobacterium xueshanense sp. nov. and Flavobacterium urumqiense sp. nov., two psychrophilic bacteria isolated from glacier ice. Int J Syst Evol Microbiol62:1151–1157 [CrossRef][PubMed]
    [Google Scholar]
  16. Dong K., Chen F., Du Y., Wang G.. 2013; Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genusFlavobacterium and Flavobacterium cauense, Flavobacterium saliperosum and Flavobacterium suncheonense. Int J Syst Evol Microbiol63:886–892 [CrossRef][PubMed]
    [Google Scholar]
  17. Embley T. M., Wait R.. 1994; Structural lipids of eubacteria. In Chemical Methods in Prokaryotic Systematics , pp.121–161 . Edited by Goodfellow M., O’Donnell A. G.. Chichester: Wiley;
    [Google Scholar]
  18. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  19. Felsenstein J.. 1993; phylip (phylogeny inference package)version 3.5c Distributed by the author Department of Genome Sciences, University of Washington; Seattle, USA:
    [Google Scholar]
  20. Fujii D., Nagai F., Watanabe Y., Shirasawa Y.. 2014; Flavobacterium longum sp. nov. and Flavobacterium urocaniciphilum sp. nov., isolated from a wastewater treatment plant, and emended descriptions ofFlavobacterium caeni and Flavobacterium terrigena. Int J Syst Evol Microbiol64:1488–1494 [CrossRef][PubMed]
    [Google Scholar]
  21. Glaeser S. P., Galatis H., Martin K., Kämpfer P.. 2013; Flavobacterium cutihirudinis sp. nov., isolated from the skin of the medical leech Hirudo verbana. Int J Syst Evol Microbiol63:2841–2847 [CrossRef][PubMed]
    [Google Scholar]
  22. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  23. Joung Y., Kim H., Joh K.. 2013; Flavobacterium jumunjinense sp. nov., isolated from a lagoon, and emended descriptions of Flavobacterium cheniae, Flavobacterium dongtanense and Flavobacterium gelidilacus. Int J Syst Evol Microbiol63:3937–3943 [CrossRef][PubMed]
    [Google Scholar]
  24. Kang J. Y., Chun J., Jahng K. Y.. 2013; Flavobacterium aciduliphilum sp. nov., isolated from freshwater, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol63:1633–1638 [CrossRef][PubMed]
    [Google Scholar]
  25. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  26. Kimura M.. 1983; The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;[CrossRef]
    [Google Scholar]
  27. Kluge A. G., Farris J. S.. 1969; Quantitative phyletics and the evolution of Anurans. Syst Zool18:1–32 [CrossRef]
    [Google Scholar]
  28. Kuo I., Saw J., Kapan D. D., Christensen S., Kaneshiro K. Y., Donachie S. P.. 2013; Flavobacterium akiainvivens sp. nov., from decaying wood of Wikstroemia oahuensis, Hawai'i, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol63:3280–3286 [CrossRef][PubMed]
    [Google Scholar]
  29. Kämpfer P., Lodders N., Martin K., Avendaño-Herrera R.. 2012; Flavobacterium chilense sp. nov. and Flavobacterium araucananum sp. nov., isolated from farmed salmonid fish. Int J Syst Evol Microbiol62:1402–1408 [CrossRef][PubMed]
    [Google Scholar]
  30. Li A., Liu H., Sun B., Zhou Y., Xin Y.. 2014; Flavobacterium lacus sp. nov., isolated from a high-altitude lake, and emended description of Flavobacterium filum. Int J Syst Evol Microbiol64:933–939 [CrossRef][PubMed]
    [Google Scholar]
  31. Lim C. S., Oh Y. S., Lee J. K., Park A. R., Yoo J. S., Rhee S. K., Roh D. H.. 2011; Flavobacterium chungbukense sp. nov., isolated from soil. Int J Syst Evol Microbiol61:2734–2739 [CrossRef][PubMed]
    [Google Scholar]
  32. Liu Y., Jin J. H., Zhou Y. G., Liu H. C., Liu Z. P.. 2010; Flavobacterium caeni sp. nov., isolated from a sequencing batch reactor for the treatment of malachite green effluents. Int J Syst Evol Microbiol60:417–421 [CrossRef][PubMed]
    [Google Scholar]
  33. Ludwig W., Euzéby J., Whitman W. B.. 2011; Taxonomic outlines of the phyla Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, andPlanctomycetes. In Bergey’s Manual of Systematic Bacteriology, 2nd edn.vol. 4 , pp.21–24 Edited by Whitman W.. Baltimore: The Williams & Wilkins Co;
    [Google Scholar]
  34. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  35. Murray R. G. E., Doetsch R. N., Robinow C. F.. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology , pp.21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Nokhal T. H., Schlegel H. G.. 1983; Taxonomic study ofParacoccus denitrificans. Int J Syst Bacteriol33:26–37 [CrossRef]
    [Google Scholar]
  37. Powers E. M.. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol61:3756–3758[PubMed]
    [Google Scholar]
  38. Reichenbach H.. 1992; The order Cytophagales. In The Prokaryotes a Handbook on the Biology of Bacteria Ecophysiology, Isolation, Identification, Applications, 2nd edn. pp.3631–3675 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.. New York: Springer;
    [Google Scholar]
  39. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  40. Sasser M.. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI Inc;
    [Google Scholar]
  41. Schmidt K., Connor A., Britton G.. 1994; Analysis of pigments: carotenoids and related polyenes. In Chemical Methods in Prokaryotic Systematics , pp.403–461 Edited by Goodfellow M., O’Donnell A. G.. Chichester: Wiley;
    [Google Scholar]
  42. Sheu S. Y., Chiu T. F., Young C. C., Arun A. B., Chen W. M.. 2011; Flavobacterium macrobrachii sp. nov., isolated from a freshwater shrimp culture pond. Int J Syst Evol Microbiol61:1402–1407 [CrossRef][PubMed]
    [Google Scholar]
  43. Sheu S. Y., Lin Y. S., Chen W. M.. 2013; Flavobacterium squillarum sp. nov., isolated from a freshwater shrimp culture pond, and emended descriptions of Flavobacterium haoranii, Flavobacterium cauense, Flavobacterium terrae and Flavobacterium aquatile. Int J Syst Evol Microbiol63:2239–2247 [CrossRef][PubMed]
    [Google Scholar]
  44. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  45. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  46. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R.. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Bacteriology, 3rd edn. pp.330–393 Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  47. Vandamme P.. 1996; Cutting a Gordian Knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol46:128–148[CrossRef]
    [Google Scholar]
  48. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703[PubMed]
    [Google Scholar]
  49. Wen C. M., Tseng C. S., Cheng C. Y., Li Y. K.. 2002; Purification, characterization and cloning of a chitinase fromBacillus sp. NCTU2. Biotechnol Appl Biochem35:213–219 [CrossRef][PubMed]
    [Google Scholar]
  50. Weon H. Y., Song M. H., Son J. A., Kim B. Y., Kwon S. W., Go S. J., Stackebrandt E.. 2007; Flavobacterium terrae sp. nov. and Flavobacterium cucumis sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol57:1594–1598 [CrossRef][PubMed]
    [Google Scholar]
  51. Yoon J. H., Kang S. J., Lee J. S., Oh T. K.. 2007; Flavobacterium terrigena sp. nov., isolated from soil. Int J Syst Evol Microbiol57:947–950 [CrossRef][PubMed]
    [Google Scholar]
  52. Zhang J., Jiang R. B., Zhang X. X., Hang B. J., He J., Li S. P.. 2010; Flavobacterium haoranii sp. nov., a cypermethrin-degrading bacterium isolated from a wastewater treatment system. Int J Syst Evol Microbiol60:2882–2886 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001198
Loading
/content/journal/ijsem/10.1099/ijsem.0.001198
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error