1887

Abstract

The taxonomic position of the mountain soil actinomycete, strain CYP1-1B, was clarified by a polyphasic study. The strain produced a single spore, or occasionally a chain of spores, on aerial mycelium. Chemotaxonomic data supported the classification of CYP1-1B as representing a member of the genus on the basis of the presence of -diaminopimelic acid in the peptidoglycan; galactose, glucose, madurose and ribose as whole cell sugars; MK-9(H), MK-9(H) and MK-9(H) as dominant menaquinones; C, 10-methylated C and Cω9 as the major cellular fatty acids; and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol manosides as the predominant phospholipids. The DNA G+C content was 74.3 mol%. On the basis of the combination of morphological and chemotaxonomic characteristics, CYP1-1B was identified as representing a member of the genus . On the basis of the results of 16S rRNA gene analysis, CYP1-1B, was shown to be closely related to DSM 44137 (98.9 %). Phenotypic, genotypic and DNA–DNA hybridization data supported the hypothesis that CYP1-1B represents a novel species of the genus for which the name sp. nov. is proposed. The type strain is CYP1-1B (=JCM 16995=KCTC 39784=PCU 349=TISTR 2400).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001196
2016-09-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3310.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001196&mimeType=html&fmt=ahah

References

  1. Ara I., Matsumoto A., Bakir M. A., Kudo T., Omura S., Takahashi Y.. 2008; Actinomadura maheshkhaliensis sp. nov., a novel actinomycete isolated from mangrove rhizosphere soil of Maheshkhali, Bangladesh. J Gen Appl Microbiol54:335–342 [CrossRef][PubMed]
    [Google Scholar]
  2. Arai T.. 1975; Culuture Media for Actinomycetes Tokyo: The Society for Actinomycetes, Japan;
    [Google Scholar]
  3. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  4. Ezaki T., Hashimto, Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229 [CrossRef]
    [Google Scholar]
  5. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  7. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  8. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98 NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  9. Han X. X., Cui C. B., Gu Q. Q., Zhu W. M., Liu H. B., Gu J. Y., Osada H.. 2005; ZHD-0501, a novel naturally occurring staurosporine analog from Actinomadura sp. 007. Tetrahedron Lett46:6137–6140 [CrossRef]
    [Google Scholar]
  10. He J., Xu Y., Tian X. P., Sahu M. K., Nie G. X., Xie Q., Zhang S., Sivakumar K., Li W.-J.. 2012; Actinomadura sediminis sp. nov., a marine actinomycete isolated from mangrove sediment. Int J Syst Bacteriol62:1110–1116 [CrossRef]
    [Google Scholar]
  11. Igarashi Y., Iida T., Oku N., Watanabe H., Furihata K., Miyanouchi K.. 2012; Nomimicin, a new spirotetronate-class polyketide from an actinomycete of the genus Actinomadura. J Antibiot65:355–359 [CrossRef][PubMed]
    [Google Scholar]
  12. Intaraudom C., Dramae A., Supothina S., Komwijit S., Pittayakhajonwut P.. 2014; 3-Oxyanthranilic acid derivatives from Actinomadura sp. BCC27169. Tetrahedron70:2711–2716 [CrossRef]
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  14. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  15. Komagata K., Suzuki K. I. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol19:161–207[CrossRef]
    [Google Scholar]
  16. Kornsakulkarn J., Saepua S., Boonruangprapa T., Suphothina S., Thongpanchang C.. 2013; New β-carboline and indole alkaloids from Actinomycete Actinomadura sp. BCC 24717. Phytochem Lett6:491–494 [CrossRef]
    [Google Scholar]
  17. Kroppenstedt R. M., Goodfellow M.. 2006; The family Thermomonosporaceae:Actinocorallia,Actinomadura, Spirillispora and Thermomonospora. In The Prokaryotes Archaea and Bacteria:Firmicutes,Actinomycetes , 3rd edn.vol. 3 pp.682–724 . Edited by Dworkin M., Falkow S., Schleifer K. H., Stackebrandt E.. New York: Springer;
    [Google Scholar]
  18. Kroppenstedt R. M., Stackebrandt E., Goodfellow M.. 1990; Taxonomic revision of the Actinomycete genera Actinomadura and Microtetraspora. Syst Appl Microbiol13:148–160 [CrossRef]
    [Google Scholar]
  19. Kämpfer P., Kroppenstedt R. M.. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol42:989–1005 [CrossRef]
    [Google Scholar]
  20. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp.115–148 Edited by Stackebrandt E., Goodfellow M.. Chichester: John Wiley & Sons;
    [Google Scholar]
  21. Lechevalier M. P., Lechevalier H. A.. 1970; Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol20:435–443 [CrossRef]
    [Google Scholar]
  22. Lee S. D., Kim S. B.. 2015; Actinomadura darangshiensis sp. nov., isolated from a volcanic cone. Int J Syst Evol Microbiol65:1431–1436 [CrossRef][PubMed]
    [Google Scholar]
  23. Lipski A., Altendorf K.. 1995; Actinomadura nitritigenes sp. nov., isolated from experimental biofilters. Int J Syst Bacteriol45:717–723 [CrossRef]
    [Google Scholar]
  24. Matsumoto A., Takahashi Y., Kudo T., Seino A., Iwai Y., Omura S.. 2000; Actinoplanes capillaceus sp. nov., a new species of the genus Actinoplanes. Antonie Van Leeuwenhoek78:107–115[PubMed][CrossRef]
    [Google Scholar]
  25. Mazzei E., Iorio M., Maffioli S. I., Sosio M., Donadio S.. 2012; Characterization of madurastatin C1, a novel siderophore from Actinomadura sp. J Antibiot65:267–269 [CrossRef][PubMed]
    [Google Scholar]
  26. Mertz F. P., Yao R. C.. 1990; Actinomadura fibrosa sp. nov. isolated from soil. Int J Syst Bacteriol40:28–33 [CrossRef][PubMed]
    [Google Scholar]
  27. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  28. Nakajima Y., Kitpreechavanich V., Suzuki K., Kudo T.. 1999; Microbispora corallina sp. nov., a new species of the genus Microbispora isolated from Thai soil. Int J Syst Evol Microbiol49:1761–1767 [CrossRef]
    [Google Scholar]
  29. Qin S., Chen H. H., Zhao G. Z., Li J., Zhu W. Y., Xu L. H., Jiang J. H., Li W. J.. 2012; Abundant and diverse endophytic actinobacteria associated with medicinal plant Maytenus austroyunnanensis in Xishuangbanna tropical rainforest revealed by culture-dependent and culture-independent methods. Environ Microbiol Rep4:522–531 [CrossRef][PubMed]
    [Google Scholar]
  30. Qin S., Zhao G. Z., Li J., Zhu W. Y., Xu L. H., Li W. J.. 2009; Actinomadura flavalba sp. nov., an endophytic actinomycete isolated from leaves of Maytenus austroyunnanensis. Int J Syst Evol Microbiol59:2453–2457 [CrossRef][PubMed]
    [Google Scholar]
  31. Roes M. L., Meyers P. R.. 2007; Actinomadura rudentiformis sp. nov., isolated from soil. Int J Syst Evol Microbiol57:45–50 [CrossRef][PubMed]
    [Google Scholar]
  32. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  33. Sasser M.. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note 101 Newark, DE: MIDI, Inc;
    [Google Scholar]
  34. Shaaban K. A., Elshahawi S. I., Wang X., Horn J., Kharel M. K., Leggas M., Thorson J. S.. 2015; Cytotoxic Indolocarbazoles from Actinomadura melliaura ATCC 39691. J Nat Prod78:1723–1729 [CrossRef][PubMed]
    [Google Scholar]
  35. Shirling E. B., Gottlieb D.. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol16:313–340 [CrossRef]
    [Google Scholar]
  36. Simmons L., Kaufmann K., Garcia R., Schwär G., Huch V., Müller R.. 2011; Bendigoles D-F, bioactive sterols from the marine sponge-derived Actinomadura sp. SBMs009. Bioorg Med Chem19:6570–6575 [CrossRef][PubMed]
    [Google Scholar]
  37. Stackebrandt E., Ebers J.. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today33:152–155
    [Google Scholar]
  38. Staneck J. L., Roberts G. D.. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol28:266–231
    [Google Scholar]
  39. Takagi M., Motohashi K., Khan S. T., Hashimoto J., Shin-ya K.. 2010; JBIR-65, a new diterpene, isolated from a sponge-derivedActinomadura sp. SpB081030SC-15. J Antibiot63:401–403 [CrossRef][PubMed]
    [Google Scholar]
  40. Tamaoka J., Komagata K.. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett25:125–128 [CrossRef]
    [Google Scholar]
  41. Tamaoka J.. 1994; Determination of DNA base composition. In Chemical Methods in Prokaryotic Systematics pp.463–470 Edited by Goodfellow M., O’Donnell A. G.. Chichester: Wiley;
    [Google Scholar]
  42. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  43. Tanasupawat S., Jongrungruangchok S., Kudo T.. 2010; Micromonospora marina sp. nov., isolated from sea sand. Int J Syst Evol Microbiol60:648–652 [CrossRef][PubMed]
    [Google Scholar]
  44. Terekhova L. P., Galatenko O. A., Preobrazhenskaia T. P.. 1982; New species, Actinomadura fulvescens sp. nov. and Actinomadura turkmeniaca sp. nov. and their antagonistic properties. Antibiotiki27:87–92[PubMed]
    [Google Scholar]
  45. Trujillo M. E., Goodfellow M.. 2012; Genus III. Actinomadura Lechevalier and Lechevalier 1970, 400AL emend. Kroppenstedt, Stackebrandt and Goodfellow 1990, 156. In Bergey’s Manual of Systematic Bacteriology, 2nd edn.vol. 5 pp.1940–1959 Edited by Goodfellow M., Kämpfer P., Busse M.-J., Trujillo M. E., Suzuki K.-L., Ludwig W., Whitman W. B.. NewYork: Springer;[CrossRef]
    [Google Scholar]
  46. Uchida K., Aida K.. 1984; An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J Gen Appl Microbiol37:463–464
    [Google Scholar]
  47. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Moore R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on thereconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  48. Williams S. T., Cross T.. 1971; Actinomycetes. Methods Microbiol4:295–334[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001196
Loading
/content/journal/ijsem/10.1099/ijsem.0.001196
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error