1887

Abstract

Strain Ndbn-20, a Gram-staining-negative, non-spore-forming bacterium, was isolated from compost of plant litter. The strain was able to degrade dicamba. Phylogenetic analysis based on 16S rRNA gene sequences indicated that Ndbn-20represented a member of the family Sphingomonadaceae of the Alphaproteobacteria and showed high sequence similarities to Rhizorhabdusargentea SP1 (98.8 %), Sphingomonaswittichii RW1 (97.9 %), Sphingomonasstarnbergensis 382 (97.7 %) and Sphingomonashistidinilytica UM2 (97.7 %). However, the strain showed low DNA sequence relatedness with R. argentea SP1 (45.6±1.9 %), S. wittichii RW1 (33.5±2.3 %), S. histidinilytica UM2 (39.4±3.6 %) and S. starnbergensis 382 (42.1±4.1 %). Ndbn-20 possessed Q-10 as the predominant ubiquinone, spermidine as the major polyamine, and summed feature 8 (comprising C18 : 1ω7c/C18 : 1ω6c), summed feature 3 (comprising C16 : 1ω7c/C16 : 1ω6c), C17 : 1ω6c, C16 : 0 and C14 : 02-OH as the major fatty acids (>5 % of the total). The profile of polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, glycolipid, sphingoglycolipid, phosphatidyldimethylethanolamine and phosphatidylglycerol. The DNA G+C content was 65.4 mol%. Based on a polyphasic taxonomic analysis, strain Ndbn-20 is proposed to represent a novel species of the genus Rhizorhabdus , with the proposed name of Rhizorhabdus dicambivorans sp. nov. The type strain is Ndbn-20 (=CCTCC AB 2016143=KACC 18661).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001194
2016-09-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3317.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001194&mimeType=html&fmt=ahah

References

  1. Busse H. J., Bunka S., Hensel A., Lubitz W..( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol 47: 698–708. [CrossRef]
    [Google Scholar]
  2. Busse J., Auling G..( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. . SystAppl Microbiol 11: 1–8. [CrossRef]
    [Google Scholar]
  3. Chen H., Jogler M., Tindall B. J., Klenk H. P., Rohde M., Busse H. J., Overmann J..( 2013;). Sphingomonas starnbergensis sp. nov., isolated from a prealpine freshwater lake. . Int J Syst Evol Microbiol 63: 1017–1023. [CrossRef] [PubMed]
    [Google Scholar]
  4. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W..( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57: 2259–2261. [CrossRef] [PubMed]
    [Google Scholar]
  5. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E..( 1977;). Distribution of menaquinones in Actinomycetes and Corynebacteria. . J Gen Microbiol 100: 221–230. [CrossRef] [PubMed]
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E..( 1989;). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39: 224–229. [CrossRef]
    [Google Scholar]
  7. Felsenstein J..( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  8. Felsenstein J..( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39: 783–791. [CrossRef]
    [Google Scholar]
  9. Fitch W. M..( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20: 406–416. [CrossRef]
    [Google Scholar]
  10. Francis I. M., Jochimsen K. N., De Vos P., van Bruggen A. H..( 2014;). Reclassification of rhizosphere bacteria including strains causing corky root of lettuce and proposal of Rhizorhapis suberifaciens gen. nov., comb. nov., Sphingobium mellinum sp. nov., Sphingobium xanthum sp. nov. and Rhizorhabdus argentea gen. nov., sp. nov. . Int J Syst Evol Microbiol 64: 1340–1350. [CrossRef] [PubMed]
    [Google Scholar]
  11. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R..( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  12. Kim M., Kang O., Zhang Y., Ren L., Chang X., Jiang F., Fang C., Zheng C., Peng F..( 2016;). Sphingoaurantiacus polygranulatus gen. nov., sp. nov., isolated from high-Arctic tundra soil, and emended descriptions of the genera Sandarakinorhabdus, Polymorphobacter and Rhizorhabdus and the species Sandarakinorhabdus limnophila,Rhizorhabdus argentea and Sphingomonas wittichii. . Int J Syst Evol Microbiol 66: 91–100. [CrossRef] [PubMed]
    [Google Scholar]
  13. Lane D. L..( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. R., Goodfellow M.. Chichester:: Wiley;.
    [Google Scholar]
  14. Mccarthy A. J., Cross T..( 1984;). A taxonomic study of Thermomonospora and other monosporic Actinomycetes. . Microbiology SGM 130: 5–25. [CrossRef]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B..( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39: 159–167. [CrossRef]
    [Google Scholar]
  16. Nigam A., Jit S., Lal R..( 2010;). Sphingomonas histidinilytica sp. nov., isolated from a hexachlorocyclohexane dump site. . Int J Syst Evol Microbiol 60: 1038–1043. [CrossRef] [PubMed]
    [Google Scholar]
  17. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  18. Sambrook J., Russell D. W..( 2001;). Molecular Cloning: A Laboratory Manual, 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  19. Sasser M..( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101. , Newark, DE:: MIDI Inc;.
  20. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S..( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28: 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  21. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G..( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25: 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  22. Tindall B. J..( 1990;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Letts 66: 199–202. [CrossRef]
    [Google Scholar]
  23. Wayne L. G., Brenner D., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L., Moore W. E. C., Murray R. G. E. et al.( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37: 463–464.[CrossRef]
    [Google Scholar]
  24. Yabuuchi E., Yamamoto H., Terakubo S., Okamura N., Naka T., Fujiwara N., Kobayashi K., Kosako Y., Hiraishi A..( 2001;). Proposal of Sphingomonas wittichii sp. nov. for strain RW1T, known as a dibenzo-p-dioxin metabolizer. . Int J Syst Evol Microbiol 51: 281–292. [CrossRef] [PubMed]
    [Google Scholar]
  25. Yao L., Jia X., Zhao J., Cao Q., Xie X., Yu L., He J., Tao Q..( 2015;). Degradation of the herbicide dicamba by two sphingomonads via different O-demethylation mechanisms. . Int Biodeterior Biodegrad 104: 324–332. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001194
Loading
/content/journal/ijsem/10.1099/ijsem.0.001194
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error