1887

Abstract

A bacterial strain, designated WDS2C18, was isolated from a marine solar saltern from the coast of Weihai, Shandong Province, China. Cells of strain WDS2C18 were long rod-shaped, red, and approximately 6.0–12.0 µm in length and 0.3–0.4 µm in width. The strain was Gram-stain-negative, facultatively anaerobic, heterotrophic, catalase-positive and oxidase-negative. Optimal growth was observed at 40 °C, at pH 7.5–8.0 with 8–12 % (w/v) NaCl. Nitrate was not reduced. Glycerol, sucrose, starch and -mannitol stimulated growth, but not glucose, -fructose, -galactose, -lactose, maltose, -mannose, -xylose, -ribose, -arabinose, -rhamnose or cellobiose. The G+C content of the genomic DNA was 58.1 mol% (HPLC). The sole methyl naphthoquinone was MK-7 and the predominant cellular fatty acids (>10 %) were iso-C 2-OH/C 7, iso-C 9, iso-C and iso-C. The predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, glycolipid, three unidentified phospholipids and two unidentified lipids. Phylogenetic analysis, based on 16S rRNA gene sequences, demonstrated that strain WDS2C18 was affiliated with the family . The closest related neighbours were species of the genera and; strain WDS2C18 shared highest 16S rRNA gene sequence similarities with DSM 21114 (91.7 %) and SYD6 (90.8 %) and less than 90.0 % to other species of the family . On the basis of these phenotypic and phylogenetic data, strain WDS2C18 should be classified as representing a novel species of a new genus within the family e, for which the name gen. nov., sp. nov. is proposed. The type strain of is WDS2C18 (=MCCC 1H00132=KCTC 52045).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001190
2016-09-01
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3287.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001190&mimeType=html&fmt=ahah

References

  1. Alfredsson G. A., Kristjansson J. K., Hjorleifsdottir S., Stetter K. O. 1988; Rhodothermus marinus gen. nov., sp. nov., a thermophilic, halophilic bacterium from submarine hot springs in Iceland. J Gen Microbiol 134:299–306 [View Article]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and PSI-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  3. Antón J., Oren A., Benlloch S., Rodríguez-Valera F., Amann R., Rosselló-Mora R. 2002; Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491 [View Article][PubMed]
    [Google Scholar]
  4. Collins M. D. 1985; Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics , pp. 267–287 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  5. Dong X. Z., Cai M. Y. 2001 Manual for the Systematic Identification of General Bacteria , pp. 364–390 Beijing: Science Press;
    [Google Scholar]
  6. Gonzalez J. M., Saiz-Jimenez C. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773[PubMed] [CrossRef]
    [Google Scholar]
  7. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  8. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  9. Kroppenstedt R. M. 1982; Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367 [View Article]
    [Google Scholar]
  10. Liu Q. Q., Wang Y., Li J., Du Z. J., Chen G. J. 2014; Saccharicrinis carchari sp. nov., isolated from a shark, and emended descriptions of the genusSaccharicrinis and Saccharicrinis fermentans . Int J Syst Evol Microbiol 64:2204–2209 [View Article][PubMed]
    [Google Scholar]
  11. Ludwig W., Euzéby J., Whitman W. B. 2010; Taxonomic outlines of the phyla Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes . In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 4 pp. 21–24 New York: Springer; [CrossRef]
    [Google Scholar]
  12. Makhdoumi-Kakhki A., Amoozegar M. A., Ventosa A. 2012; Salinibacter iranicus sp. nov. andSalinibacter luteus sp. nov., isolated from a salt lake, and emended descriptions of the genusSalinibacter and ofSalinibacter ruber . Int J Syst Evol Microbiol 62:1521–1527 [View Article][PubMed]
    [Google Scholar]
  13. Marteinsson V. T., Bjornsdottir S. H., Bienvenu N., Kristjansson J. K., Birrien J. L., Snaedis H. 2010; Rhodothermus profundi sp. nov., a thermophilic bacterium isolated from a deep-sea hydrothermal vent in the Pacific Ocean. Int J Syst Evol Microbiol 60:2729–2734 [View Article][PubMed]
    [Google Scholar]
  14. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  15. Park S., Yoshizawa S., Kogure K., Yokota A. 2011; Rubricoccus marinus gen. nov., sp. nov., of the family ‘Rhodothermaceae', isolated from seawater. Int J Syst Evol Microbiol 61:2069–2072 [View Article][PubMed]
    [Google Scholar]
  16. Park S., Song J., Yoshizawa S., Choi A., Cho J. C., Kogure K. 2013; Rubrivirga marina gen. nov., sp. nov., a member of the familyRhodothermaceae isolated from deep seawater. Int J Syst Evol Microbiol 63:2229–2233 [View Article][PubMed]
    [Google Scholar]
  17. Sako Y., Takai K., Ishida Y., Uchida A., Katayama Y. 1996; Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Bacteriol 46:1099–1104 [View Article][PubMed]
    [Google Scholar]
  18. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology , pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  21. Vaisman N., Oren A. 2009; Salisaeta longa gen. nov., sp. nov., a red, halophilic member of the Bacteroidetes. Int J Syst Evol Microbiol 59:2571–2574 [View Article][PubMed]
    [Google Scholar]
  22. West M., Burdash N. M., Freimuth F. 1977; Simplified silver-plating stain for flagella. J Clin Microbiol 6:414–419[PubMed]
    [Google Scholar]
  23. Xia J., Zhou Y. X., Zhao L. H., Chen G. J., Du Z. J. 2015; Longimonas halophila gen. nov., sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 65:2272–2276 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.001190
Loading
/content/journal/ijsem/10.1099/ijsem.0.001190
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error