1887

Abstract

Two bacterial strains were isolated from faecal samples of Tibetan antelopes. The isolates were Gram-stain-positive, catalase-negative, coccus-shaped organisms that were tentatively identified as representing a novel streptococcal species based on their morphological features, biochemical test results and phylogenomic findings. Comparative 16S rRNA gene sequencing studies confirmed that the organisms were members of the genus , but they did not correspond to any recognized species of the genus. The nearest phylogenetic relative of the unknown coccus was NUM 1615 (93.4 % 16S rRNA gene sequence similarity). Analysis of and gene sequences of the novel isolates showed interspecies divergence of 27.0 and 22.2 %, respectively, from the type strain of its closest 16S rRNA gene phylogenetic relative, . The complete genome of strain TA 26 has been sequenced. Digital DNA–DNA hybridization studies between strain TA 26 and other species of the genus deposited in the GenBank database showed less than 70 % DNA–DNA relatedness, supporting a novel species status of the strain. On the basis of their genotypic and phenotypic differences from recognized species, the two isolates represent a novel species of the genus , for which the name sp. nov. (type strain TA 26=CGMCC 1.15667=DSM 102135) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001189
2016-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3281.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001189&mimeType=html&fmt=ahah

References

  1. Auch A. F., von Jan M., Klenk H. P., Göker M. 2010; Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2:117–134 [View Article][PubMed]
    [Google Scholar]
  2. Berlin K., Koren S., Chin C. S., Drake J. P., Landolin J. M., Phillippy A. M. 2015; Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 33:623–630 [View Article][PubMed]
    [Google Scholar]
  3. Besemer J., Lomsadze A., Borodovsky M. 2001; GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618 [View Article][PubMed]
    [Google Scholar]
  4. Braden G. C., Arbona R. R., Lepherd M., Monette S., Toma A., Fox J. G., Dewhirst F. E., Lipman N. S. 2015; A Novel α-Hemolytic Streptococcus Species (Streptococcus azizii sp. nov.) Associated with Meningoencephalitis in Naïve Weanling C57BL/6 Mice. Comp Med 65:186–195[PubMed]
    [Google Scholar]
  5. Chanter N. 1997; Streptococci and enterococci as animal pathogens. Soc Appl Bacteriol Symp Ser 26:100S–109S [View Article][PubMed]
    [Google Scholar]
  6. Chen L., Zheng D., Liu B., Yang J., Jin Q. 2016; VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res 44:D694–697 [View Article][PubMed]
    [Google Scholar]
  7. Collins M. D., Lundström T., Welinder-Olsson C., Hansson I., Wattle O., Hudson R. A., Falsen E. 2004; Streptococcus devriesei sp. nov., from equine teeth. Syst Appl Microbiol 27:146–150 [View Article][PubMed]
    [Google Scholar]
  8. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 101:738–754[PubMed]
    [Google Scholar]
  9. Deloger M., El Karoui M., Petit M. A. 2009; A genomic distance based on MUM indicates discontinuity between most bacterial species and genera. J Bacteriol 191:91–99 [View Article][PubMed]
    [Google Scholar]
  10. Drancourt M., Roux V., Fournier P. E., Raoult D. 2004; rpoB gene sequence-based identification of aerobic Gram-positive cocci of the genera Streptococcus, Enterococcus, Gemella, Abiotrophia, and Granulicatella . J Clin Microbiol 42:497–504 [View Article][PubMed]
    [Google Scholar]
  11. Facklam R., Elliott J. A. 1995; Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci . Clin Microbiol Rev 8:479–495[PubMed]
    [Google Scholar]
  12. Glazunova O. O., Raoult D., Roux V. 2009; Partial sequence comparison of the rpoB, sodA, groEL and gyrB genes within the genus Streptococcus . Int J Syst Evol Microbiol 59:2317–2322 [View Article][PubMed]
    [Google Scholar]
  13. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M. 2007; DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91 [View Article][PubMed]
    [Google Scholar]
  14. Grissa I., Vergnaud G., Pourcel C. 2007; CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–57 [View Article][PubMed]
    [Google Scholar]
  15. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704[PubMed] [CrossRef]
    [Google Scholar]
  16. Holmes A. R., McNab R., Millsap K. W., Rohde M., Hammerschmidt S., Mawdsley J. L., Jenkinson H. F. 2001; The pavA gene of Streptococcus pneumoniae encodes a fibronectin-binding protein that is essential for virulence. Mol Microbiol 41:1395–1408 [View Article][PubMed]
    [Google Scholar]
  17. Janda W. M. 2014; The Genus Streptococcus – Part I: Emerging Pathogens in the “Pyogenic Cocci” and the “Streptococcus bovis” Groups. Clinical Microbiology Newsletter 36:157–166 [View Article]
    [Google Scholar]
  18. Jin D., Chen C., Li L., Lu S., Li Z., Zhou Z., Jing H., Xu Y., Du P. et al. 2013; Dynamics of fecal microbial communities in children with diarrhea of unknown etiology and genomic analysis of associated Streptococcus lutetiensis. BMC Microbiol 13:141 [View Article][PubMed]
    [Google Scholar]
  19. Köhler W. 2007; The present state of species within the genera Streptococcus and Enterococcus . Int J Med Microbiol 297:133–150 [View Article][PubMed]
    [Google Scholar]
  20. Lagesen K., Hallin P., Rødland E. A., Staerfeldt H. H., Rognes T., Ussery D. W. 2007; RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  21. Lowe T. M., Eddy S. R. 1997; tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964 [View Article][PubMed]
    [Google Scholar]
  22. McCarthy A. 2010; Third generation DNA sequencing: pacific biosciences' single molecule real time technology. Chem Biol 17:675–676 [View Article][PubMed]
    [Google Scholar]
  23. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M. 2013; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60 [View Article][PubMed]
    [Google Scholar]
  24. Okamoto M., Imai S., Miyanohara M., Saito W., Momoi Y., Abo T., Nomura Y., Ikawa T., Ogawa T. et al. 2013; Streptococcus troglodytae sp. nov., from the chimpanzee oral cavity. Int J Syst Evol Microbiol 63:418–422 [View Article][PubMed]
    [Google Scholar]
  25. Okamoto M., Imai S., Miyanohara M., Saito W., Momoi Y., Nomura Y., Ikawa T., Ogawa T., Miyabe-Nishiwaki T. et al. 2015; Streptococcus panodentis sp. nov. from the oral cavities of chimpanzees. Microbiol Immunol 59:526–532 [View Article][PubMed]
    [Google Scholar]
  26. Póntigo F., Moraga M., Flores S. V. 2015; Molecular phylogeny and a taxonomic proposal for the genus Streptococcus . Genet Mol Res 14:10905–10918 [View Article][PubMed]
    [Google Scholar]
  27. Saito M., Shinozaki-Kuwahara N., Hirasawa M., Takada K. 2016; Streptococcus oricebi sp. nov., isolated from the oral cavity of tufted capuchin. Int J Syst Evol Microbiol 66:1063–1067 [View Article][PubMed]
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  29. Schrager H. M., Albertí S., Cywes C., Dougherty G. J., Wessels M. R. 1998; Hyaluronic acid capsule modulates M protein-mediated adherence and acts as a ligand for attachment of group A Streptococcus to CD44 on human keratinocytes. J Clin Invest 101:1708–1716 [View Article][PubMed]
    [Google Scholar]
  30. Shinozaki-Kuwahara N., Takada K., Hirasawa M. 2011; Streptococcus ursoris sp. nov., isolated from the oral cavities of bears. Int J Syst Evol Microbiol 61:40–44 [View Article][PubMed]
    [Google Scholar]
  31. Takada K., Hirasawa M. 2008; Streptococcus dentirousetti sp. nov., isolated from the oral cavities of bats. Int J Syst Evol Microbiol 58:160–163 [View Article][PubMed]
    [Google Scholar]
  32. Takada K., Hayashi K., Sato Y., Hirasawa M. 2010; Streptococcus dentapri sp. nov., isolated from the wild boar oral cavity. Int J Syst Evol Microbiol 60:820–823 [View Article][PubMed]
    [Google Scholar]
  33. Takada K., Saito M., Tsudukibashi O., Hiroi T., Hirasawa M. 2013; Streptococcus orisasini sp. nov. andStreptococcus dentasini sp. nov., isolated from the oral cavity of donkeys. Int J Syst Evol Microbiol 63:2782–2786 [View Article][PubMed]
    [Google Scholar]
  34. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  35. Thompson J. D., Gibson T. J., Higgins D. G. 2002; Multiple sequence alignment using clustalw and clustalx . Curr Protoc Bioinformatics Chapter 2: Unit 2.3 [View Article][PubMed]
    [Google Scholar]
  36. Vela A. I., Sánchez V., Mentaberre G., Lavín S., Domínguez L., Fernández-Garayzábal J. F. 2011; Streptococcus porcorum sp. nov., isolated from domestic and wild pigs. Int J Syst Evol Microbiol 61:1585–1589 [View Article][PubMed]
    [Google Scholar]
  37. Vela A. I., Sánchez Del Rey V., Zamora L., Casamayor A., Domínguez L., Fernández-Garayzábal J. F. 2014; Streptococcus cuniculi sp. nov., isolated from the respiratory tract of wild rabbits. Int J Syst Evol Microbiol 64:2486–2490 [View Article][PubMed]
    [Google Scholar]
  38. Vela A. I., Casas-Díaz E., Lavín S., Domínguez L., Fernández-Garayzábal J. F. 2015; Streptococcus pharyngis sp. nov., a novelstreptococcal species isolated from the respiratory tract of wild rabbits. Int J Syst Evol Microbiol 65:2903–2907 [View Article][PubMed]
    [Google Scholar]
  39. Vela A. I., Mentaberre G., Lavín S., Domínguez L., Fernández-Garayzábal J. F. 2016; Streptococcus caprae sp. nov., isolated from Iberian ibex (Capra pyrenaica hispanica). Int J Syst Evol Microbiol 66:196–200 [View Article][PubMed]
    [Google Scholar]
  40. Whiley R. A., Beighton D. 1998; Current classification of the oral streptococci . Oral Microbiol Immunol 13:195–216 [View Article][PubMed]
    [Google Scholar]
  41. Yu Z., Wang T., Sun H., Xia Z., Zhang K., Chu D., Xu Y., Xin Y., Xu W. et al. 2013; Contagious caprine pleuropneumonia in endangered Tibetan antelope, China, 2012. Emerg Infect Dis 19:2051–2053 [View Article][PubMed]
    [Google Scholar]
  42. Zhou Y., Liang Y., Lynch K. H., Dennis J. J., Wishart D. S. 2011; PHAST: a fast phage search tool. Nucleic Acids Res 39:W347–W352 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001189
Loading
/content/journal/ijsem/10.1099/ijsem.0.001189
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error