1887

Abstract

Two bacterial strains were isolated from faecal samples of Tibetan antelopes. The isolates were Gram-stain-positive, catalase-negative, coccus-shaped organisms that were tentatively identified as representing a novel streptococcal species based on their morphological features, biochemical test results and phylogenomic findings. Comparative 16S rRNA gene sequencing studies confirmed that the organisms were members of the genus , but they did not correspond to any recognized species of the genus. The nearest phylogenetic relative of the unknown coccus was NUM 1615 (93.4 % 16S rRNA gene sequence similarity). Analysis of and gene sequences of the novel isolates showed interspecies divergence of 27.0 and 22.2 %, respectively, from the type strain of its closest 16S rRNA gene phylogenetic relative, . The complete genome of strain TA 26 has been sequenced. Digital DNA–DNA hybridization studies between strain TA 26 and other species of the genus deposited in the GenBank database showed less than 70 % DNA–DNA relatedness, supporting a novel species status of the strain. On the basis of their genotypic and phenotypic differences from recognized species, the two isolates represent a novel species of the genus , for which the name sp. nov. (type strain TA 26=CGMCC 1.15667=DSM 102135) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001189
2016-09-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3281.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001189&mimeType=html&fmt=ahah

References

  1. Auch A. F., von Jan M., Klenk H. P., Göker M.. 2010; Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  2. Berlin K., Koren S., Chin C. S., Drake J. P., Landolin J. M., Phillippy A. M.. 2015; Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol33:623–630 [CrossRef][PubMed]
    [Google Scholar]
  3. Besemer J., Lomsadze A., Borodovsky M.. 2001; GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res29:2607–2618 [CrossRef][PubMed]
    [Google Scholar]
  4. Braden G. C., Arbona R. R., Lepherd M., Monette S., Toma A., Fox J. G., Dewhirst F. E., Lipman N. S.. 2015; A Novel α-Hemolytic Streptococcus Species (Streptococcus azizii sp. nov.) Associated with Meningoencephalitis in Naïve Weanling C57BL/6 Mice. Comp Med65:186–195[PubMed]
    [Google Scholar]
  5. Chanter N.. 1997; Streptococci and enterococci as animal pathogens. Soc Appl Bacteriol Symp Ser26:100S–109S [CrossRef][PubMed]
    [Google Scholar]
  6. Chen L., Zheng D., Liu B., Yang J., Jin Q.. 2016; VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res44:D694–697 [CrossRef][PubMed]
    [Google Scholar]
  7. Collins M. D., Lundström T., Welinder-Olsson C., Hansson I., Wattle O., Hudson R. A., Falsen E.. 2004; Streptococcus devriesei sp. nov., from equine teeth. Syst Appl Microbiol27:146–150 [CrossRef][PubMed]
    [Google Scholar]
  8. De Ley J.. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol101:738–754[PubMed]
    [Google Scholar]
  9. Deloger M., El Karoui M., Petit M. A.. 2009; A genomic distance based on MUM indicates discontinuity between most bacterial species and genera. J Bacteriol191:91–99 [CrossRef][PubMed]
    [Google Scholar]
  10. Drancourt M., Roux V., Fournier P. E., Raoult D.. 2004; rpoB gene sequence-based identification of aerobic Gram-positive cocci of the genera Streptococcus, Enterococcus, Gemella, Abiotrophia, and Granulicatella. J Clin Microbiol42:497–504 [CrossRef][PubMed]
    [Google Scholar]
  11. Facklam R., Elliott J. A.. 1995; Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci. Clin Microbiol Rev8:479–495[PubMed]
    [Google Scholar]
  12. Glazunova O. O., Raoult D., Roux V.. 2009; Partial sequence comparison of the rpoB, sodA, groEL and gyrB genes within the genus Streptococcus. Int J Syst Evol Microbiol59:2317–2322 [CrossRef][PubMed]
    [Google Scholar]
  13. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. 2007; DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  14. Grissa I., Vergnaud G., Pourcel C.. 2007; CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res35:W52–57 [CrossRef][PubMed]
    [Google Scholar]
  15. Guindon S., Gascuel O.. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol52:696–704[PubMed][CrossRef]
    [Google Scholar]
  16. Holmes A. R., McNab R., Millsap K. W., Rohde M., Hammerschmidt S., Mawdsley J. L., Jenkinson H. F.. 2001; The pavA gene of Streptococcus pneumoniae encodes a fibronectin-binding protein that is essential for virulence. Mol Microbiol41:1395–1408 [CrossRef][PubMed]
    [Google Scholar]
  17. Janda W. M.. 2014; The Genus Streptococcus – Part I: Emerging Pathogens in the “Pyogenic Cocci” and the “Streptococcus bovis” Groups. Clinical Microbiology Newsletter36:157–166 [CrossRef]
    [Google Scholar]
  18. Jin D., Chen C., Li L., Lu S., Li Z., Zhou Z., Jing H., Xu Y., Du P. et al. 2013; Dynamics of fecal microbial communities in children with diarrhea of unknown etiology and genomic analysis of associated Streptococcus lutetiensis. BMC Microbiol13:141 [CrossRef][PubMed]
    [Google Scholar]
  19. Köhler W.. 2007; The present state of species within the genera Streptococcus and Enterococcus. Int J Med Microbiol297:133–150 [CrossRef][PubMed]
    [Google Scholar]
  20. Lagesen K., Hallin P., Rødland E. A., Staerfeldt H. H., Rognes T., Ussery D. W.. 2007; RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res35:3100–3108 [CrossRef][PubMed]
    [Google Scholar]
  21. Lowe T. M., Eddy S. R.. 1997; tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res25:955–964 [CrossRef][PubMed]
    [Google Scholar]
  22. McCarthy A.. 2010; Third generation DNA sequencing: pacific biosciences' single molecule real time technology. Chem Biol17:675–676 [CrossRef][PubMed]
    [Google Scholar]
  23. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M.. 2013; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14:60 [CrossRef][PubMed]
    [Google Scholar]
  24. Okamoto M., Imai S., Miyanohara M., Saito W., Momoi Y., Abo T., Nomura Y., Ikawa T., Ogawa T. et al. 2013; Streptococcus troglodytae sp. nov., from the chimpanzee oral cavity. Int J Syst Evol Microbiol63:418–422 [CrossRef][PubMed]
    [Google Scholar]
  25. Okamoto M., Imai S., Miyanohara M., Saito W., Momoi Y., Nomura Y., Ikawa T., Ogawa T., Miyabe-Nishiwaki T. et al. 2015; Streptococcus panodentis sp. nov. from the oral cavities of chimpanzees. Microbiol Immunol59:526–532 [CrossRef][PubMed]
    [Google Scholar]
  26. Póntigo F., Moraga M., Flores S. V.. 2015; Molecular phylogeny and a taxonomic proposal for the genus Streptococcus. Genet Mol Res14:10905–10918 [CrossRef][PubMed]
    [Google Scholar]
  27. Saito M., Shinozaki-Kuwahara N., Hirasawa M., Takada K.. 2016; Streptococcus oricebi sp. nov., isolated from the oral cavity of tufted capuchin. Int J Syst Evol Microbiol66:1063–1067 [CrossRef][PubMed]
    [Google Scholar]
  28. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  29. Schrager H. M., Albertí S., Cywes C., Dougherty G. J., Wessels M. R.. 1998; Hyaluronic acid capsule modulates M protein-mediated adherence and acts as a ligand for attachment of group A Streptococcus to CD44 on human keratinocytes. J Clin Invest101:1708–1716 [CrossRef][PubMed]
    [Google Scholar]
  30. Shinozaki-Kuwahara N., Takada K., Hirasawa M.. 2011; Streptococcus ursoris sp. nov., isolated from the oral cavities of bears. Int J Syst Evol Microbiol61:40–44 [CrossRef][PubMed]
    [Google Scholar]
  31. Takada K., Hirasawa M.. 2008; Streptococcus dentirousetti sp. nov., isolated from the oral cavities of bats. Int J Syst Evol Microbiol58:160–163 [CrossRef][PubMed]
    [Google Scholar]
  32. Takada K., Hayashi K., Sato Y., Hirasawa M.. 2010; Streptococcus dentapri sp. nov., isolated from the wild boar oral cavity. Int J Syst Evol Microbiol60:820–823 [CrossRef][PubMed]
    [Google Scholar]
  33. Takada K., Saito M., Tsudukibashi O., Hiroi T., Hirasawa M.. 2013; Streptococcus orisasini sp. nov. andStreptococcus dentasini sp. nov., isolated from the oral cavity of donkeys. Int J Syst Evol Microbiol63:2782–2786 [CrossRef][PubMed]
    [Google Scholar]
  34. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  35. Thompson J. D., Gibson T. J., Higgins D. G.. 2002; Multiple sequence alignment using clustalw and clustalx. Curr Protoc BioinformaticsChapter 2: Unit 2.3 [CrossRef][PubMed]
    [Google Scholar]
  36. Vela A. I., Sánchez V., Mentaberre G., Lavín S., Domínguez L., Fernández-Garayzábal J. F.. 2011; Streptococcus porcorum sp. nov., isolated from domestic and wild pigs. Int J Syst Evol Microbiol61:1585–1589 [CrossRef][PubMed]
    [Google Scholar]
  37. Vela A. I., Sánchez Del Rey V., Zamora L., Casamayor A., Domínguez L., Fernández-Garayzábal J. F.. 2014; Streptococcus cuniculi sp. nov., isolated from the respiratory tract of wild rabbits. Int J Syst Evol Microbiol64:2486–2490 [CrossRef][PubMed]
    [Google Scholar]
  38. Vela A. I., Casas-Díaz E., Lavín S., Domínguez L., Fernández-Garayzábal J. F.. 2015; Streptococcus pharyngis sp. nov., a novelstreptococcal species isolated from the respiratory tract of wild rabbits. Int J Syst Evol Microbiol65:2903–2907 [CrossRef][PubMed]
    [Google Scholar]
  39. Vela A. I., Mentaberre G., Lavín S., Domínguez L., Fernández-Garayzábal J. F.. 2016; Streptococcus caprae sp. nov., isolated from Iberian ibex (Capra pyrenaica hispanica). Int J Syst Evol Microbiol66:196–200 [CrossRef][PubMed]
    [Google Scholar]
  40. Whiley R. A., Beighton D.. 1998; Current classification of the oral streptococci. Oral Microbiol Immunol13:195–216 [CrossRef][PubMed]
    [Google Scholar]
  41. Yu Z., Wang T., Sun H., Xia Z., Zhang K., Chu D., Xu Y., Xin Y., Xu W. et al. 2013; Contagious caprine pleuropneumonia in endangered Tibetan antelope, China, 2012. Emerg Infect Dis19:2051–2053 [CrossRef][PubMed]
    [Google Scholar]
  42. Zhou Y., Liang Y., Lynch K. H., Dennis J. J., Wishart D. S.. 2011; PHAST: a fast phage search tool. Nucleic Acids Res39:W347–W352 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001189
Loading
/content/journal/ijsem/10.1099/ijsem.0.001189
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error