1887

Abstract

A Gram-stain-negative, aerobic, motile and rod-shaped or ovoid bacterial strain, designated YSM-23, was isolated from a tidal flat on the South Sea in South Korea, and subjected to a polyphasic taxonomic study. Strain YSM-23 grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 1.0–2.0 % (w/v) NaCl. The phylogenetic trees based on 16S rRNA gene sequences showed that strain YSM-23 represented a member of the genus Colwellia . Strain YSM-23 exhibited 16S rRNA gene sequence similarity values of 98.0, 97.4 and 97.3 % to the type strains of Colwellia aestuarii , Colwellia polaris and Colwellia chukchiensis , respectively, and of 94.5–96.8 % to the type strains of the other species of the genus Colwellia . Strain YSM-23 contained Q-8 as the predominant ubiquinone and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) as the major fatty acid. The major polar lipids detected in strain YSM-23 were phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content of strain YSM-23 was 43.8±0.08 mol% and its DNA–DNA relatedness values with the type strain of C . aestuarii , C . polaris and C . chukchiensis were 10±3.5–22±4.9 %. Differential phenotypic properties, together with its phylogenetic and genetic distinctiveness, revealed that strain YSM-23 is separated from species of the genus Colwellia with validly published names. On the basis of the data presented, strain YSM-23 is considered to represent a novel species of the genus Colwellia , for which the name Colwellia sediminilitoris sp. nov. is proposed. The type strain is YSM-23 (=KCTC 52213=NBRC 111994).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001183
2016-09-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3258.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001183&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kim H., Park J. Y., Wakabayashi H., Oyaizu H..( 2000;). Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. . Int J Syst Evol Microbiol 50: 1563–1589. [CrossRef] [PubMed]
    [Google Scholar]
  2. Barrow G. I., Feltham R. K. A..( 1993;). Cowan and Steel’s Manual for the Identification of Medical Bacteria, , 3rd edn.. Cambridge:: Cambridge University Press;.[CrossRef]
    [Google Scholar]
  3. Baumann P., Baumann L..( 1981;). The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. . In The Prokaryotes, pp. 1302–1331 . Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G.. Berlin:: Springer;.
    [Google Scholar]
  4. Bowman J. P., Gosink J. J., McCammon S. A., Lewis T. E., Nichols D. S., Nichols P. D., Skerratt J. H., Staley J. T., McMeekin T. A..( 1998;). Colwellia demingiae sp. nov.,Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22 : 6ω3). . Int J Syst Bacteriol 48: 1171–1180. [CrossRef]
    [Google Scholar]
  5. Bruns A., Rohde M., Berthe-Corti L..( 2001;). Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. . Int J Syst Evol Microbiol 51: 1997–2006. [CrossRef] [PubMed]
    [Google Scholar]
  6. Choi E. J., Kwon H. C., Koh H. Y., Kim Y. S., Yang H. O..( 2010;). Colwellia asteriadis sp. nov., a marine bacterium isolated from the starfishAsterias amurensis. . Int J Syst Evol Microbiol 60: 1952–1957. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cohen-Bazire G., Sistrom W. R., Stanier R. Y..( 1957;). Kinetic studies of pigment synthesis by nonsulfur purple bacteria. . J Cell Comp Physiol 49: 25–68.[CrossRef]
    [Google Scholar]
  8. Deming J. W., Somers L. K., Straube W. L., Swartz D. G., MacDonell M. T..( 1988;). Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. . Syst Appl Microbiol 10: 152–160.[CrossRef]
    [Google Scholar]
  9. Embley T. M., Wait R..( 1994;). Structural lipids of eubacteria. . In Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics, pp. 121–161. Edited by Goodfellow M., O’Donnell A. G.. Chichester:: John Wiley & Sons;.
    [Google Scholar]
  10. Ezaki T., Hashimoto Y., Yabuuchi E..( 1989;). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39: 224–229.[CrossRef]
    [Google Scholar]
  11. Jung S. Y., Oh T. K., Yoon J. H..( 2006;). Colwellia aestuarii sp. nov., isolated from a tidal flat sediment in Korea. . Int J Syst Evol Microbiol 56: 33–37. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kim Y. O., Park S., Nam B. H., Jung Y. T., Kim D. G., Yoon J. H..( 2013;). Colwellia meonggei sp. nov., a novel gammaproteobacterium isolated from sea squirtHalocynthia roretzi. . Antonie Van Leeuwenhoek 104: 1021–1027. [CrossRef] [PubMed]
    [Google Scholar]
  13. Komagata K., Suzuki K..( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19: 161–207.[CrossRef]
    [Google Scholar]
  14. Lányí B..( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19: 1–67.[CrossRef]
    [Google Scholar]
  15. Liu Y., Liu L.-Z., Zhong Z.-P., Zhou Y.-G., Liu Y., Liu Z.-P..( 2014;). Colwellia aquaemaris sp. nov., isolated from theCynoglossus semilaevis culture tank in a recirculating mariculture system. . Int J Syst Evol Microbiol 64: 3926–3930. [CrossRef] [PubMed]
    [Google Scholar]
  16. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H..( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2: 233–241.[CrossRef]
    [Google Scholar]
  17. Nogi Y., Hosoya S., Kato C., Horikoshi K..( 2004;). Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. . Int J Syst Evol Microbiol 54: 1627–1631. [CrossRef] [PubMed]
    [Google Scholar]
  18. Park S., Park D.-S., Bae K. S., Yoon J.-H..( 2014;). Phaeobacter aquaemixtae sp. nov., isolated from the junction between the ocean and a freshwater spring. . Int J Syst Evol Microbiol 64: 1378–1383. [CrossRef] [PubMed]
    [Google Scholar]
  19. Parte A. C..( 2014;). LPSN-list of prokaryotic names with standing in nomenclature. . Nucleic Acids Res 42: D613–D616. [CrossRef] [PubMed]
    [Google Scholar]
  20. Sasser M..( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI. Inc;.
  21. Stackebrandt E., Goebel B. M..( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44: 846–849.[CrossRef]
    [Google Scholar]
  22. Staley J. T..( 1968;). Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. . J Bacteriol 95: 1921–1942.[PubMed]
    [Google Scholar]
  23. Tamaoka J., Komagata K..( 1984;). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25: 125–128. [CrossRef]
    [Google Scholar]
  24. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al.( 1987;). International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37: 463–464.[CrossRef]
    [Google Scholar]
  25. Yoon J.-H., Kim H., Kim S.-B., Kim H.-J., Kim W. Y., Lee S. T., Goodfellow M., Park Y.-H..( 1996;). Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. . Int J Syst Bacteriol 46: 502–505. [CrossRef]
    [Google Scholar]
  26. Yoon J. H., Lee S. T., Park Y. H..( 1998;). Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. . Int J Syst Bacteriol 48: 187–194. [CrossRef] [PubMed]
    [Google Scholar]
  27. Yoon J. H., Kang K. H., Park Y. H..( 2003;). Psychrobacter jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. . Int J Syst Evol Microbiol 53: 449–454. [CrossRef] [PubMed]
    [Google Scholar]
  28. Yu Y., Li H.-R., Zeng Y.-X..( 2011;). Colwellia chukchiensis sp. nov., a psychrotolerant bacterium isolated from the Arctic Ocean. . Int J Syst Evol Microbiol 61: 850–853. [CrossRef] [PubMed]
    [Google Scholar]
  29. Yumoto I., Kawasaki K., Iwata H., Matsuyama H., Okuyama H..( 1998;). Assignment of Vibrio sp. strain ABE-1 to Colwellia maris sp. nov., a new psychrophilic bacterium. . Int J Syst Bacteriol 48: 1357–1362. [CrossRef] [PubMed]
    [Google Scholar]
  30. Yurkov V., Stackebrandt E., Holmes A., Fuerst J. A., Hugenholtz P., Golecki J., Gad'on N., Gorlenko V. M., Kompantseva E. I. et al.( 1994;). Phylogenetic positions of novel aerobic, bacteriochlorophyll α-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. . Int J Syst Bacteriol 44: 427–434. [CrossRef] [PubMed]
    [Google Scholar]
  31. Zhang D. C., Yu Y., Xin Y. H., Liu H. C., Zhou P. J., Zhou Y. G..( 2008;). Colwellia polaris sp. nov., a psychrotolerant bacterium isolated from Arctic sea ice. . Int J Syst Evol Microbiol 58: 1931–1934. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001183
Loading
/content/journal/ijsem/10.1099/ijsem.0.001183
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error