1887

Abstract

is a marine bacterium species of the genus (, ). The species has been shown to be closely related to members of the genus in the so-called Harveyi clade. The clade includes at least 11 closely related species with similar physiological and biochemical properties. Due to these similarities, species of the Harveyi clade are difficult to characterize taxonomically. Previously phenotypic and genotypic properties of the type strain were compared with six species of the Harveyi clade, resulting in the possibility that could be a synonym of a previously described species. In this study, the taxonomic status of was analyzed using genomic approaches. The whole-genome sequence of the type strain of , CECT 7692, was obtained and analyzed. Calculations of average nucleotide identity with the algorithm (ANIb) showed that CECT 7692 has an ANIb of 97.5 % or higher to five strains of , including the type strain, but an ANIb lower than 93.5 % to other members of the Harveyi clade . Phylogenetic analysis based on nucleotide sequences of 133 protein-coding genes showed a close evolutionary relationship of CECT 7692 to . Based on these results, is proposed to be a later heterotypic synonym of .

Keyword(s): Harveyi clade and Vibrionaceae
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001173
2016-08-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/3214.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001173&mimeType=html&fmt=ahah

References

  1. Balcázar J. L., Planas M., Pintado J.. 2012; Vibrio inhibens sp. nov., a novel bacterium with inhibitory activity against Vibrio species. J Antibiot (Tokyo)65:301–305 [CrossRef][PubMed]
    [Google Scholar]
  2. Goloboff P. A., Farris J. S., Nixon K. C.. 2008; TNT, a free program for phylogenetic analysis. Cladistics24:774–786 [CrossRef]
    [Google Scholar]
  3. González-Escalona N., Romero J., Espejo R. T.. 2005; Polymorphism and gene conversion of the 16S rRNA genes in the multiple rRNA operons of Vibrio parahaemolyticus . FEMS Microbiol Lett246:213–219 [CrossRef][PubMed]
    [Google Scholar]
  4. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. 2007; DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  5. Kajitani R., Toshimoto K., Noguchi H., Toyoda A., Ogura Y., Okuno M., Yabana M., Harada M., Nagayasu E. et al. 2014; Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res24:1384–1395 [CrossRef][PubMed]
    [Google Scholar]
  6. Lee I., Kim Y. O., Park S. C., Chun J.. 2015; OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol66:1100–1103[CrossRef]
    [Google Scholar]
  7. Maddison W. P., Maddison D. R.. 2015; Mesquite: a modular system for evolutionary analysis Version 3.04. http://mesquiteproject.org
  8. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M.. 2013; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14:60 [CrossRef][PubMed]
    [Google Scholar]
  9. Oren A., Garrity G. M.. 2015; List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol65:741–744[CrossRef]
    [Google Scholar]
  10. Richter M., Rosselló-Móra R.. 2009; Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  11. Sawabe T., Ogura Y., Matsumura Y., Feng G., Amin A. R., Mino S., Nakagawa S., Sawabe T., Kumar R. et al. 2013; Updating the Vibrio clades defined by multilocus sequence phylogeny: proposal of eight new clades, and the description of Vibrio tritonius sp. nov. Front Microbiol27:414 [CrossRef]
    [Google Scholar]
  12. Urbanczyk H., Ogura Y., Hayashi T.. 2013; Taxonomic revision of Harveyi clade bacteria (family Vibrionaceae) based on analysis of whole genome sequences. Int J Syst Evol Microbiol63:2742–2751 [CrossRef][PubMed]
    [Google Scholar]
  13. Urbanczyk H., Ogura Y., Hayashi T.. 2014; Contrasting inter- and intraspecies recombination patterns in the ‘Harveyi clade’ Vibrio collected over large spatial and temporal scales. Genome Biol Evol19:71–80 [CrossRef]
    [Google Scholar]
  14. Urbanczyk Y., Ogura Y., Hayashi T., Urbanczyk H.. 2015; Description of a novel marine bacterium, Vibrio hyugaensis sp. nov., based on genomic and phenotypic characterization. Syst Appl Microbiol38:300–304 [CrossRef][PubMed]
    [Google Scholar]
  15. Vezzi A., Campanaro S., D'Angelo M., Simonato F., Vitulo N., Lauro F. M., Cestaro A., Malacrida G., Simionati B. et al. 2005; Life at depth: Photobacterium profundum genome sequence and expression analysis. Science307:1459–1461 [CrossRef][PubMed]
    [Google Scholar]
  16. Yoshizawa S., Tsuruya Y., Fukui Y., Sawabe T., Yokota A., Kogure K., Higgins M., Carson J., Thompson F. L.. 2012; Vibrio jasicida sp. nov., a member of the Harveyi clade, isolated from marine animals (packhorse lobster, abalone and Atlantic salmon). Int J Syst Evol Microbiol62:1864–1870 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001173
Loading
/content/journal/ijsem/10.1099/ijsem.0.001173
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error