1887

Abstract

A Gram-stain-negative, motile by gliding, non-spore-forming and oval-shaped bacterial strain designated T1-10 was isolated from pine forest soil, and its taxonomic position was investigated using a polyphasic approach. Growth occurred at 10–37 °C (optimum, 30 °C), at pH 6–7 and in the presence of 0–1 % (w/v) (optimum, 0 %) NaCl. Flexirubin-type pigments were produced. On the basis of 16S rRNA gene sequence similarity, strain T1-10 was assigned to the genus Taibaiella of the phylum Bacteroidetes , and the most closely related species was Taibaiella koreensis THG-DT86 with 97.11 % sequence similarity, but the strain formed an independent lineage in the phylogenetic tree. The genomic DNA G+C content of strain T1-10 was 42.5 mol%. The main cellular fatty acids were iso-C15 : 1 G, iso-C15 : 0 and iso-C17 : 0 3-OH. The only isoprenoid quinone detected in the strain was MK-7, and the major polyamine was homospermidine. The major polar lipids were phosphatidylethanolamine and unidentified aminophospholipids. Strain T1-10 could be distinguished from related species by physiological and biochemical properties. Phenotypic and phylogenetic data supported that strain T1-10 represents a novel species of the genus Taibaiella , for which the name Taibaiella soli sp. nov. is proposed (type strain T1-10=KCTC 42277=JCM 31014).

Keyword(s): gliding , Pinus , soil and Taibaiella
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001172
2016-08-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/3230.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001172&mimeType=html&fmt=ahah

References

  1. Busse H.-J. , Bunka S. , Hensel A. , Lubitz W. . ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Evol Microbiol 47: 698–708. [CrossRef]
    [Google Scholar]
  2. Fautz E. , Reichenbach H. . ( 1980;). A simple test for flexirubin-type pigments. . FEMS Microbiol Lett 8: 87–91. [CrossRef]
    [Google Scholar]
  3. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376.[PubMed] [CrossRef]
    [Google Scholar]
  4. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39: 783. [CrossRef]
    [Google Scholar]
  5. Fitch W. M. . ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20: 406–416. [CrossRef]
    [Google Scholar]
  6. Gonzalez J. M. , Saiz-Jimenez C. . ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4: 770–773.[PubMed] [CrossRef]
    [Google Scholar]
  7. Jeon Y. S. , Lee K. , Park S. C. , Kim B. S. , Cho Y. J. , Ha S. M. , Chun J. . ( 2014;). EzEditor: a versatile sequence alignment editor for both rRNA- and protein-coding genes. . Int J Syst Evol Microbiol 64: 689–691. [CrossRef] [PubMed]
    [Google Scholar]
  8. Jukes T. H. , Cantor C. R. . ( 1969;). Evolution of protein molecules. In Mammalian Protein Metabolism ,vol. 3 pp. 21–132. Edited by Munro H. N. . New York:: Academic Press;.[CrossRef]
    [Google Scholar]
  9. Kim M. K. , Kim T. W. , Kim T. S. , Joung Y. , Han J. H. , Kim S. B. . ( 2016;). Fluviicoccus keumensis gen. nov., sp. nov., isolated from freshwater. . Int J Syst Evol Microbiol 66: 201–205. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kim M. , Oh H. S. , Park S. C. , Chun J. . ( 2014;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. . Int J Syst Evol Microbiol 64: 346–351. [CrossRef] [PubMed]
    [Google Scholar]
  11. Kovacs N. . ( 1956;). Identification of Pseudomonas pyocyanea by the oxidase reaction. . Nature 178: 703. [CrossRef] [PubMed]
    [Google Scholar]
  12. Minnikin D. , Patel P. , Alshamaony L. , Goodfellow M. . ( 1977;). Polar lipid composition in the classification of Nocardia and related bacteria. . Int J Syst Evol Bacteriol 27: 104–117. [CrossRef]
    [Google Scholar]
  13. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  14. Sasser M. . ( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. . MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  15. Scherer P. , Kneifel H. . ( 1983;). Distribution of polyamines in methanogenic bacteria. . J Bacteriol 154: 1315–1322.[PubMed]
    [Google Scholar]
  16. Singh H. , Du J. , Won K. , Yang J. E. , Akter S. , Kim K. Y. , Yin C. , Yi T. H. . ( 2015;). Taibaiella yonginensis sp. nov., a bacterium isolated from soil of Yongin city. . Antonie van Leeuwenhoek 108: 517–524. [CrossRef] [PubMed]
    [Google Scholar]
  17. Son H. M. , Kook M. , Kim J. H. , Yi T. H. . ( 2014;). Taibaiella koreensis sp. nov., isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 64: 1018–1023. [CrossRef] [PubMed]
    [Google Scholar]
  18. Stackebrandt E. , Ebers J. . ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33: 152–155.
    [Google Scholar]
  19. Szabó I. , Szoboszlay S. , Táncsics A. , Szerdahelyi S. G. , Szu˝cs Á. , Radó J. , Benedek T. , Szabó L. , Daood H. G. et al. ( 2016;). Taibaiella coffeisoli sp. nov., isolated from the soil of a coffee plantation. . Int J Syst Evol Microbiol 66: 1627–1632. [CrossRef] [PubMed]
    [Google Scholar]
  20. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). mega6: Molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  21. Tan X. , Zhang R. G. , Meng T. Y. , Liang H. Z. , Lv J. . ( 2014;). Taibaiella chishuiensis sp. nov., isolated from freshwater. . Int J Syst Evol Microbiol 64: 1795–1801. [CrossRef] [PubMed]
    [Google Scholar]
  22. Zhang L. , Wang Y. , Wei L. , Wang Y. , Shen X. , Li S. . ( 2013;). Taibaiella smilacinae gen. nov., sp. nov., an endophytic member of the family Chitinophagaceae isolated from the stem of Smilacina japonica, and emended description of Flavihumibacter petaseus . . Int J Syst Evol Microbiol 63: 3769–3776. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001172
Loading
/content/journal/ijsem/10.1099/ijsem.0.001172
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error