Emended description of the family and transfer of the genera and to the family fam. nov. Free

Abstract

The family was circumscribed in 2005 to accommodate four genera of phylogenetically related alphaproteobacteria: , , and . Later, four additional genera, i.e. , , and , were described and assigned to this family, which now accommodates 21 species with validly published names. Members of this family possess strikingly different lifestyles, including chemoheterotrophy, facultative methylotrophy, obligate methanotrophy and facultative methanotrophy. Levels of 16S rRNA gene sequence similarity among most of these bacteria range from 96 to 98 %, suggesting a common evolutionary origin. The genera and , however, are not monophyletic with the other described genera based on 16S rRNA gene sequence phylogeny, and instead form a distant cluster more closely related to the . Physiologically these two genera also lack several properties common to the other . On the other hand, the genus , presently considered a member of the , affiliates with high confidence to the . Here, we propose to transfer the genera and to the family fam. nov., and present an emended description of the family , including the genus .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001167
2016-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/3177.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001167&mimeType=html&fmt=ahah

References

  1. Auling G., Busse H.-J., Egli T., El-Banna T., Stackebrandt E. 1993; Description of the gram-negative, Obligately Aerobic, Nitrilotriacetate (NTA)-utilizing bacteria as Chelatobacter heintzii, gen. nov., sp. nov., and Chelatococcus asaccharovorans, gen. nov., sp. nov. Syst Appl Microbiol 16:104–112 [View Article]
    [Google Scholar]
  2. Berestovskaya J. J., Kotsyurbenko O. R., Tourova T. P., Kolganova T. V., Doronina N. V., Golyshin P. N., Vasilyeva L. V. 2012; Methylorosula polaris gen. nov., sp. nov., an aerobic, facultatively methylotrophic psychrotolerant bacterium from tundra wetland soil. Int J Syst Evol Microbiol 62:638–646 [View Article][PubMed]
    [Google Scholar]
  3. Crombie A. T., Murrell J. C. 2014; Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris . Nature 510:148–151 [View Article][PubMed]
    [Google Scholar]
  4. Dedysh S. N., Liesack W., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Semrau J. D., Bares A. M., Panikov N. S., Tiedje J. M. 2000; Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969 [View Article][PubMed]
    [Google Scholar]
  5. Dedysh S. N., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Semrau J. D., Liesack W., Tiedje J. M. 2002; Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52:251–261 [View Article][PubMed]
    [Google Scholar]
  6. Dedysh S. N., Berestovskaya Y. Y., Vasylieva L. V., Belova S. E., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Liesack W., Zavarzin G. A. 2004; Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54:151–156 [View Article][PubMed]
    [Google Scholar]
  7. Dedysh S. N., Smirnova K. V., Khmelenina V. N., Suzina N. E., Liesack W., Trotsenko Y. A. 2005a; Methylotrophic autotrophy in Beijerinckia mobilis . J Bacteriol 187:3884–3888 [View Article][PubMed]
    [Google Scholar]
  8. Dedysh S. N., Knief C., Dunfield P. F. 2005b; Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4670 [View Article][PubMed]
    [Google Scholar]
  9. Dedysh S. N., Didriksen A., Danilova O. V., Belova S. E., Liebner S., Svenning M. M. 2015; Methylocapsa palsarum sp. nov., a methanotroph isolated from a subArctic discontinuous permafrost ecosystem. Int J Syst Evol Microbiol 65:3618–3624 [View Article][PubMed]
    [Google Scholar]
  10. Drummond A. J., Suchard M. A., Xie D., Rambaut A. 2012; Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973 [CrossRef]
    [Google Scholar]
  11. Dunfield P. F., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Dedysh S. N. 2003; Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53:1231–1239 [View Article][PubMed]
    [Google Scholar]
  12. Dunfield P. F., Belova S. E., Vorob'ev A. V., Cornish S. L., Dedysh S. N. 2010; Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa . Int J Syst Evol Microbiol 60:2659–2664 [View Article][PubMed]
    [Google Scholar]
  13. Dunfield P. F., Dedysh S. N. 2014; Methylocella: a gourmand among methanotrophs. Trends Microbiol 22:368–369 [View Article][PubMed]
    [Google Scholar]
  14. Garrity G. M., Bell J. A., Lilburn T. 2005; Family VI. Beijerinckiaceae fam. nov. In Bergey’s Manual of Systematic Bacteriology, the Proteobacteria Part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria , 2nd edn. vol. 2 pp. 422 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  15. Imhoff J. F. 2001; Transfer of Rhodopseudomonas acidophila to the new genus Rhodoblastus as Rhodoblastus acidophilus gen. nov., comb. nov. Int J Syst Evol Microbiol 51:1863–1866 [View Article][PubMed]
    [Google Scholar]
  16. Jin L., Ko S. R., Lee H. G., Kim B. H., Kim H. S., Ahn C. Y., Oh H. M. 2015; Chelatococcus caeni sp. nov., isolated from a biofilm reactor sludge sample. Int J Syst Evol Microbiol 65:885–889 [View Article][PubMed]
    [Google Scholar]
  17. Kennedy C. 2005; Genus I Beijerinckia. In Bergeys Manual Systematic Bacteriology, the Proteobacteria Part C (The Alpha-, Beta-, Delta- and Epsilonproteobacteria , 2nd edn. vol. 2 pp 423–432 Edited by Brenner D. J., Krieg N. R., Staley J. R. New York: Springer; [CrossRef]
    [Google Scholar]
  18. Kulichevskaya I. S., Guzev V. S., Gorlenko V. M., Liesack W., Dedysh S. N. 2006; Rhodoblastus sphagnicola sp. nov., a novel acidophilic purple non-sulfur bacterium from Sphagnum peat bog. Int J Syst Evol Microbiol 56:1397–1402 [View Article][PubMed]
    [Google Scholar]
  19. Kämpfer P., Scholz H. C., Langer S., Wernery U., Wernery R., Johnson B., Joseph M., Lodders N., Busse H. J. 2010; Camelimonas lactis gen. nov., sp. nov., isolated from the milk of camels. Int J Syst Evol Microbiol 60:2382–2386 [View Article][PubMed]
    [Google Scholar]
  20. Kämpfer P., Scholz H. C., Lodders N., Loncaric I., Whatmore A. M., Busse H. J. 2012; Camelimonas abortus sp. nov., isolated from placental tissue of cattle. Int J Syst Evol Microbiol 62:1117–1120 [View Article][PubMed]
    [Google Scholar]
  21. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. 2004; ARB: a software environment for sequence data. Nucl Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  22. Marín I., Arahal D. R. 2014; The family Beijerinckiaceae. In The Prokaryotes – Alphaproteobacteria and Betaproteobacteria pp. 115–133 Edited by Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., Thompson F. Berlin Heidelberg: Springer-Verlag; [CrossRef]
    [Google Scholar]
  23. Panday D., Das S. K. 2010; Chelatococcus sambhunathii sp. nov., a moderately thermophilic alphaproteobacterium isolated from hot spring sediment. Int J Syst Evol Microbiol 60:861–865 [View Article][PubMed]
    [Google Scholar]
  24. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F. O. 2013; The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res 41:D590–D596 [View Article][PubMed]
    [Google Scholar]
  25. Tamas I., Smirnova A. V., He Z., Dunfield P. F. 2014; The (d)evolution of methanotrophy in the Beijerinckiaceae-a comparative genomics analysis. ISME J 8:369–382 [View Article][PubMed]
    [Google Scholar]
  26. Validation list Number 107 2006; List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 56:1–6 [View Article][PubMed]
    [Google Scholar]
  27. Vorob'ev A. V., De Boer W., Folman L. B., Bodelier P. L., Doronina N. V., Suzina N. E., Trotsenko Y. A., Dedysh S. N. 2009; Methylovirgula ligni gen. nov., sp. nov., an obligately acidophilic, facultatively methylotrophic bacterium with a highly divergent mxaF gene. Int J Syst Evol Microbiol 59:2538–2545 [View Article][PubMed]
    [Google Scholar]
  28. Vorobev A. V., Baani M., Doronina N. V., Brady A. L., Liesack W., Dunfield P. F., Dedysh S. N. 2011; Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61:2456–2463 [View Article][PubMed]
    [Google Scholar]
  29. Xia Z. Y., Chen K., Zhang L., Wu S., Li S. P., Huang J. W., Jiang J.-D., Song M., Cao Q. et al. 2015; Camelimonas fluminis sp. nov., a cyhalothrin-degrading bacterium isolated from river water. Int J Syst Evol Microbiol 65:3109–3114 [View Article][PubMed]
    [Google Scholar]
  30. Yoon J. H., Kang S. J., Im W. T., Lee S. T., Oh T. K. 2008; Chelatococcus daeguensis sp. nov., isolated from wastewater of a textile dye works, and emended description of the genus Chelatococcus . Int J Syst Evol Microbiol 58:2224–2228 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001167
Loading
/content/journal/ijsem/10.1099/ijsem.0.001167
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed