sp. nov., isolated from soil Free

Abstract

A novel bacterial strain, designated as LNUB461, was isolated from soil sample taken from the countryside of Shenyang, Liaoning Province, China. The isolate was a Gram-stain-positive, aerobiotic, motile, endospore-forming and rod-shaped bacterium. The organism grew optimally at 30–33 °C, pH 6.5–7.0 and in the absence of NaCl. Phylogenetic analysis based on the nearly full-length 16S rRNA gene sequence revealed high sequence similarity with XJ259 (98.5 %), B538 (96.8 %), DS-1 (96.1 %) and RLAHU15 (96.1 %). The predominant cellular fatty acid and the only menaquinone were anteiso-C and MK-7, respectively. The main polar lipids of LNUB461 included phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC) and two unknown amino phospholipids (APL), and the cell-wall peptidoglycan was -diaminopimelic acid (A1γ). The DNA G+C content of LNUB461 was 49.1 mol%. The DNA–DNA hybridization value between LNUB461 and the most closely related species () was 41.8 %. On the basis of these data, LNUB461 was classified as representing a novel species of the genus , for which the name sp. nov was proposed. The type strain is LNUB461 (=JCM 30712=CGMCC 1.15101).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001159
2016-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/3150.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001159&mimeType=html&fmt=ahah

References

  1. Ash C., Priest F. G., Collins M. D. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie Van Leeuwenhoek 64:253–260 [View Article][PubMed]
    [Google Scholar]
  2. Baker G. C., Smith J. J., Cowan D. A. 2003; Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555 [View Article][PubMed]
    [Google Scholar]
  3. Carro L., Flores-Félix J. D., Ramírez-Bahena M. H., García-Fraile P., Martínez-Hidalgo P., Igual J. M., Tejedor C., Peix A., Velázquez E. 2014; Paenibacillus lupini sp. nov., isolated from nodules of Lupinus albus . Int J Syst Evol Microbiol 64:3028–3033 [View Article][PubMed]
    [Google Scholar]
  4. Christensen H., Angen O., Mutters R., Olsen J. E., Bisgaard M. 2000; DNA–DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 50:1095–1102 [View Article][PubMed]
    [Google Scholar]
  5. Collins M. D., Jones D. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 48:459–470 [View Article]
    [Google Scholar]
  6. Collins M. D. 1985; Isoprenoid quinone analyses in bacterial classification and identification. In Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series No. 20) pp. 267–287 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  7. Dasman K., Kajiyama S., Kawasaki H., Yagi M., Seki T., Fukusaki E., Kobayashi A. 2002; Paenibacillus glycanilyticus sp. nov., a novel species that degrades heteropolysaccharide produced by the cyanobacterium Nostoc commune . Int J Syst Evol Microbiol 52:1669–1674 [View Article][PubMed]
    [Google Scholar]
  8. Dsouza M., Taylor M. W., Ryan J., MacKenzie A., Lagutin K., Anderson R. F., Turner S. J., Aislabie J. 2014; Paenibacillus darwinianus sp. nov., isolated from gamma-irradiated Antarctic soil. Int J Syst Evol Microbiol 64:1406–1411 [View Article][PubMed]
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in micro-dilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  10. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  11. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  12. Gregersen T. 1978; Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127 [View Article]
    [Google Scholar]
  13. Hasegawa T., Takizawa M., Tanida S. 1983; A rapid analysis for chemical grouping of aerobic Actinomycetes . J Gen Appl Microbiol 29:319–322 [View Article]
    [Google Scholar]
  14. Johnson J. L. 1985; Determination of DNA base composition, DNA reassociation and RNA hybridization of bacterial nucleic acid. Methods Microbiol 18:1–74 [CrossRef]
    [Google Scholar]
  15. Kawasaki H., Hoshino Y., Hirata A., Yamasato K. 1993; Is intracytoplasmic membrane structure a generic criterion? It does not coincide with phylogenetic interrelationships among phototrophic purple nonsulfur bacteria. Arch Microbiol 160:358–362 [View Article][PubMed]
    [Google Scholar]
  16. Khianngam S., Tanasupawat S., Lee J. S., Lee K. C., Akaracharanya A. 2009; Paenibacillus siamensis sp. nov., Paenibacillus septentrionalis sp. nov. and Paenibacillus montaniterrae sp. nov., xylanase-producing bacteria from Thai soils. Int J Syst Evol Microbiol 59:130–134 [View Article][PubMed]
    [Google Scholar]
  17. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  18. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  19. Kluge A. G., Farris J. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [View Article]
    [Google Scholar]
  20. Kuykendall L. D., Roy M. A., O'neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [View Article]
    [Google Scholar]
  21. Lanyi B. 1988; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67 [CrossRef]
    [Google Scholar]
  22. Lee F. L., Tien C. J., Tai C. J., Wang L. T., Liu Y. C., Chern L. L. 2008; Paenibacillus taichungensis sp. nov., from soil in Taiwan. Int J Syst Evol Microbiol 58:2640–2645 [View Article][PubMed]
    [Google Scholar]
  23. Lee J., Shin N. R., Jung M. J., Roh S. W., Kim M. S., Lee J. S., Lee K. C., Kim Y. O., Bae J. W. 2013; Paenibacillus oceanisediminis sp. nov. isolated from marine sediment. Int J Syst Evol Microbiol 63:428–434 [View Article][PubMed]
    [Google Scholar]
  24. Lim J. M., Jeon C. O., Park D. J., Xu L. H., Jiang C. L., Kim C. J. 2006; Paenibacillus xinjiangensis sp. nov., isolated from Xinjiang province in China. Int J Syst Evol Microbiol 56:2579–2582 [View Article][PubMed]
    [Google Scholar]
  25. Ludwig W., Schleifer K. H., Whitman W. B. 2009; Family IV. Paenibacillaceae fam. nov. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 3 p. 269 Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F., Schleifer K. H., Whitman W. B. New York: Springer;
    [Google Scholar]
  26. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high- performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  27. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and Related Taxa. J Appl Bacteriol 47:87–95 [View Article]
    [Google Scholar]
  28. Nakamura L. K. 1984; Bacillus amylolyticus sp. nov., nom. rev., Bacillus lautus sp. nov., nom. rev., Bacillus pabuli sp. nov., nom. rev., and Bacillus validus sp. nov., nom. rev. Int J Syst Bacteriol 34:224–226 [View Article]
    [Google Scholar]
  29. Ng W. L., Yang C. F., Halladay J. T., Arora A., DasSarma S. 1995; Protocol 25. Isolation of genomic and plasmid DNAs from Halobacterium halobium . In Archaea: A Laboratory Manual vol. 1 p. 179–180 Edited by DasSarma S., Fleischmann E. M. Cold spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Park M. H., Traiwan J., Jung M. Y., Nam Y. S., Jeong J. H., Kim W. 2011; Paenibacillus chungangensis sp. nov., isolated from a tidal-flat sediment. Int J Syst Evol Microbiol 61:281–285 [View Article][PubMed]
    [Google Scholar]
  31. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  32. Sasser M. 1990 Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 Newark DE: MIDI Inc;
    [Google Scholar]
  33. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997; Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol 47:289–298 [View Article][PubMed]
    [Google Scholar]
  34. Shimoyama T., Johari N. B., Tsuruya A., Nair A., Nakayama T. 2014; Paenibacillus relictisesami sp. nov., isolated from sesame oil cake. Int J Syst Evol Microbiol 64:1534–1539 [View Article][PubMed]
    [Google Scholar]
  35. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Manual of Methods for General and Microbiology Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231[PubMed]
    [Google Scholar]
  37. Takagi H., Shida O., Kadowaki K., Komagata K., Udaka S. 1993; Characterization of Bacillus brevis with descriptions of Bacillus migulanus sp. nov., Bacillus choshinensis sp. nov., Bacillus parabrevis sp. nov., and Bacillus galactophilus sp. nov. Int J Syst Bacteriol 43:221–231 [View Article][PubMed]
    [Google Scholar]
  38. Tamura K., Nei M. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526[PubMed]
    [Google Scholar]
  39. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  40. Tang Q. Y., Yang N., Wang J., Xie Y. Q., Ren B., Zhou Y. G., Gu M. Y., Mao J., Li W. J. et al. 2011; Paenibacillus algorifonticola sp. nov., isolated from a cold spring. Int J Syst Evol Microbiol 61:2167–2172 [View Article][PubMed]
    [Google Scholar]
  41. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  42. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P. 2010; Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266 [View Article][PubMed]
    [Google Scholar]
  43. Tittsler R. P., Sandholzer L. A. 1936; The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 31:575–580[PubMed]
    [Google Scholar]
  44. Valverde A., Fterich A., Mahdhi M., Ramírez-Bahena M. H., Caviedes M. A., Mars M., Velázquez E., Rodriguez-Llorente I. D. 2010; Paenibacillus prosopidis sp. nov., isolated from the nodules of Prosopis farcta . Int J Syst Evol Microbiol 60:2182–2186 [View Article][PubMed]
    [Google Scholar]
  45. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  46. Wu Y. F., Wu Q. L., Liu S. J. 2013; Paenibacillus taihuensis sp. nov., isolated from an eutrophic lake. Int J Syst Evol Microbiol 63:3652–3658 [View Article][PubMed]
    [Google Scholar]
  47. Yao R., Wang R., Wang D., Su J., Zheng S., Wang G. 2014; Paenibacillus selenitireducens sp. nov., a selenite-reducing bacterium isolated from a selenium mineral soil. Int J Syst Evol Microbiol 64:805–811 [View Article][PubMed]
    [Google Scholar]
  48. Yoon J. H., Kang S. J., Oh T. K. 2005; Marinomonas dokdonensis sp. nov., isolated from sea water. Int J Syst Evol Microbiol 55:2303–2307 [View Article][PubMed]
    [Google Scholar]
  49. Zhang J., Wang Z. T., Yu H. M., Ma Y. 2013; Paenibacillus catalpae sp. nov., isolated from the rhizosphere soil of Catalpa speciosa . Int J Syst Evol Microbiol 63:1776–1781 [View Article][PubMed]
    [Google Scholar]
  50. Zhang Y. J., Zhang X. Y., Mi Z. H., Chen C. X., Gao Z. M., Chen X. L., Yu Y., Chen B., Zhang Y. Z. 2011; Glaciecola arctica sp. nov., isolated from Arctic marine sediment. Int J Syst Evol Microbiol 61:2338–2341 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001159
Loading
/content/journal/ijsem/10.1099/ijsem.0.001159
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed