1887

Abstract

A novel bacterial strain, designated as LNUB461, was isolated from soil sample taken from the countryside of Shenyang, Liaoning Province, China. The isolate was a Gram-stain-positive, aerobiotic, motile, endospore-forming and rod-shaped bacterium. The organism grew optimally at 30–33 °C, pH 6.5–7.0 and in the absence of NaCl. Phylogenetic analysis based on the nearly full-length 16S rRNA gene sequence revealed high sequence similarity with Paenibacillus algorifonticola XJ259 (98.5 %), Paenibacillus xinjiangensis B538 (96.8 %), Paenibacillus glycanilyticus DS-1 (96.1 %) and Paenibacillus lupini RLAHU15 (96.1 %). The predominant cellular fatty acid and the only menaquinone were anteiso-C15:0 and MK-7, respectively. The main polar lipids of LNUB461 included phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC) and two unknown amino phospholipids (APL), and the cell-wall peptidoglycan was meso-diaminopimelic acid (A1γ). The DNA G+C content of LNUB461 was 49.1 mol%. The DNA–DNA hybridization value between LNUB461 and the most closely related species ( P. algorifonticola ) was 41.8 %. On the basis of these data, LNUB461 was classified as representing a novel species of the genus Paenibacillus , for which the name Paenibacillus liaoningensis sp. nov was proposed. The type strain is LNUB461 (=JCM 30712=CGMCC 1.15101).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001159
2016-08-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/3150.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001159&mimeType=html&fmt=ahah

References

  1. Ash C. , Priest F. G. , Collins M. D. . ( 1993;). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . . Antonie Van Leeuwenhoek 64: 253–260. [CrossRef] [PubMed]
    [Google Scholar]
  2. Baker G. C. , Smith J. J. , Cowan D. A. . ( 2003;). Review and re-analysis of domain-specific 16S primers. . J Microbiol Methods 55: 541–555. [CrossRef] [PubMed]
    [Google Scholar]
  3. Carro L. , Flores-Félix J. D. , Ramírez-Bahena M. H. , García-Fraile P. , Martínez-Hidalgo P. , Igual J. M. , Tejedor C. , Peix A. , Velázquez E. . ( 2014;). Paenibacillus lupini sp. nov., isolated from nodules of Lupinus albus . . Int J Syst Evol Microbiol 64: 3028–3033. [CrossRef] [PubMed]
    [Google Scholar]
  4. Christensen H. , Angen O. , Mutters R. , Olsen J. E. , Bisgaard M. . ( 2000;). DNA–DNA hybridization determined in micro-wells using covalent attachment of DNA. . Int J Syst Evol Microbiol 50: 1095–1102. [CrossRef] [PubMed]
    [Google Scholar]
  5. Collins M. D. , Jones D. . ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. . J Appl Bacteriol 48: 459–470. [CrossRef]
    [Google Scholar]
  6. Collins M. D. . ( 1985;). Isoprenoid quinone analyses in bacterial classification and identification. . In Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series No. 20), pp. 267–287. Edited by Goodfellow M. , Minnikin D. E. . London:: Academic Press;.
    [Google Scholar]
  7. Dasman K. , Kajiyama S. , Kawasaki H. , Yagi M. , Seki T. , Fukusaki E. , Kobayashi A. . ( 2002;). Paenibacillus glycanilyticus sp. nov., a novel species that degrades heteropolysaccharide produced by the cyanobacterium Nostoc commune . . Int J Syst Evol Microbiol 52: 1669–1674. [CrossRef] [PubMed]
    [Google Scholar]
  8. Dsouza M. , Taylor M. W. , Ryan J. , MacKenzie A. , Lagutin K. , Anderson R. F. , Turner S. J. , Aislabie J. . ( 2014;). Paenibacillus darwinianus sp. nov., isolated from gamma-irradiated Antarctic soil. . Int J Syst Evol Microbiol 64: 1406–1411. [CrossRef] [PubMed]
    [Google Scholar]
  9. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989;). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in micro-dilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39: 224–229. [CrossRef]
    [Google Scholar]
  10. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  11. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39: 783–791. [CrossRef]
    [Google Scholar]
  12. Gregersen T. . ( 1978;). Rapid method for distinction of Gram-negative from Gram-positive bacteria. . Eur J Appl Microbiol Biotechnol 5: 123–127. [CrossRef]
    [Google Scholar]
  13. Hasegawa T. , Takizawa M. , Tanida S. . ( 1983;). A rapid analysis for chemical grouping of aerobic Actinomycetes . . J Gen Appl Microbiol 29: 319–322. [CrossRef]
    [Google Scholar]
  14. Johnson J. L. . ( 1985;). Determination of DNA base composition, DNA reassociation and RNA hybridization of bacterial nucleic acid. . Methods Microbiol 18: 1–74.[CrossRef]
    [Google Scholar]
  15. Kawasaki H. , Hoshino Y. , Hirata A. , Yamasato K. . ( 1993;). Is intracytoplasmic membrane structure a generic criterion? It does not coincide with phylogenetic interrelationships among phototrophic purple nonsulfur bacteria. . Arch Microbiol 160: 358–362. [CrossRef] [PubMed]
    [Google Scholar]
  16. Khianngam S. , Tanasupawat S. , Lee J. S. , Lee K. C. , Akaracharanya A. . ( 2009;). Paenibacillus siamensis sp. nov., Paenibacillus septentrionalis sp. nov. and Paenibacillus montaniterrae sp. nov., xylanase-producing bacteria from Thai soils. . Int J Syst Evol Microbiol 59: 130–134. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16: 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kluge A. G. , Farris J. S. . ( 1969;). Quantitative phyletics and the evolution of anurans. . Syst Zool 18: 1–32. [CrossRef]
    [Google Scholar]
  20. Kuykendall L. D. , Roy M. A. , O'neill J. J. , Devine T. E. . ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . . Int J Syst Bacteriol 38: 358–361. [CrossRef]
    [Google Scholar]
  21. Lanyi B. . ( 1988;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19: 1–67.[CrossRef]
    [Google Scholar]
  22. Lee F. L. , Tien C. J. , Tai C. J. , Wang L. T. , Liu Y. C. , Chern L. L. . ( 2008;). Paenibacillus taichungensis sp. nov., from soil in Taiwan. . Int J Syst Evol Microbiol 58: 2640–2645. [CrossRef] [PubMed]
    [Google Scholar]
  23. Lee J. , Shin N. R. , Jung M. J. , Roh S. W. , Kim M. S. , Lee J. S. , Lee K. C. , Kim Y. O. , Bae J. W. . ( 2013;). Paenibacillus oceanisediminis sp. nov. isolated from marine sediment. . Int J Syst Evol Microbiol 63: 428–434. [CrossRef] [PubMed]
    [Google Scholar]
  24. Lim J. M. , Jeon C. O. , Park D. J. , Xu L. H. , Jiang C. L. , Kim C. J. . ( 2006;). Paenibacillus xinjiangensis sp. nov., isolated from Xinjiang province in China. . Int J Syst Evol Microbiol 56: 2579–2582. [CrossRef] [PubMed]
    [Google Scholar]
  25. Ludwig W. , Schleifer K. H. , Whitman W. B. . ( 2009;). Family IV. Paenibacillaceae fam. nov. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn.,vol. 3 p. 269 Edited by De Vos P. , Garrity G. M. , Jones D. , Krieg N. R. , Ludwig W. , Rainey F. , Schleifer K. H. , Whitman W. B. . New York:: Springer;.
    [Google Scholar]
  26. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high- performance liquid chromatography. . Int J Syst Bacteriol 39: 159–167. [CrossRef]
    [Google Scholar]
  27. Minnikin D. E. , Collins M. D. , Goodfellow M. . ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and Related Taxa. . J Appl Bacteriol 47: 87–95. [CrossRef]
    [Google Scholar]
  28. Nakamura L. K. . ( 1984;). Bacillus amylolyticus sp. nov., nom. rev., Bacillus lautus sp. nov., nom. rev., Bacillus pabuli sp. nov., nom. rev., and Bacillus validus sp. nov., nom. rev. . Int J Syst Bacteriol 34: 224–226. [CrossRef]
    [Google Scholar]
  29. Ng W. L. , Yang C. F. , Halladay J. T. , Arora A. , DasSarma S. . ( 1995;). Protocol 25. Isolation of genomic and plasmid DNAs from Halobacterium halobium . . In Archaea: A Laboratory Manual,vol. 1 p. 179–180. Edited by DasSarma S. , Fleischmann E. M. . Cold spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  30. Park M. H. , Traiwan J. , Jung M. Y. , Nam Y. S. , Jeong J. H. , Kim W. . ( 2011;). Paenibacillus chungangensis sp. nov., isolated from a tidal-flat sediment. . Int J Syst Evol Microbiol 61: 281–285. [CrossRef] [PubMed]
    [Google Scholar]
  31. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  32. Sasser M. . ( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark DE:: MIDI Inc;.
    [Google Scholar]
  33. Shida O. , Takagi H. , Kadowaki K. , Nakamura L. K. , Komagata K. . ( 1997;). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . . Int J Syst Bacteriol 47: 289–298. [CrossRef] [PubMed]
    [Google Scholar]
  34. Shimoyama T. , Johari N. B. , Tsuruya A. , Nair A. , Nakayama T. . ( 2014;). Paenibacillus relictisesami sp. nov., isolated from sesame oil cake. . Int J Syst Evol Microbiol 64: 1534–1539. [CrossRef] [PubMed]
    [Google Scholar]
  35. Smibert R. M. , Krieg N. R. . ( 1994;). Phenotypic characterization. . In Manual of Methods for General and Microbiology Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  36. Staneck J. L. , Roberts G. D. . ( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. . Appl Microbiol 28: 226–231.[PubMed]
    [Google Scholar]
  37. Takagi H. , Shida O. , Kadowaki K. , Komagata K. , Udaka S. . ( 1993;). Characterization of Bacillus brevis with descriptions of Bacillus migulanus sp. nov., Bacillus choshinensis sp. nov., Bacillus parabrevis sp. nov., and Bacillus galactophilus sp. nov. . Int J Syst Bacteriol 43: 221–231. [CrossRef] [PubMed]
    [Google Scholar]
  38. Tamura K. , Nei M. . ( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. . Mol Biol Evol 10: 512–526.[PubMed]
    [Google Scholar]
  39. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28: 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  40. Tang Q. Y. , Yang N. , Wang J. , Xie Y. Q. , Ren B. , Zhou Y. G. , Gu M. Y. , Mao J. , Li W. J. et al. ( 2011;). Paenibacillus algorifonticola sp. nov., isolated from a cold spring. . Int J Syst Evol Microbiol 61: 2167–2172. [CrossRef] [PubMed]
    [Google Scholar]
  41. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25: 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  42. Tindall B. J. , Rosselló-Móra R. , Busse H. J. , Ludwig W. , Kämpfer P. . ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60: 249–266. [CrossRef] [PubMed]
    [Google Scholar]
  43. Tittsler R. P. , Sandholzer L. A. . ( 1936;). The use of semi-solid agar for the detection of bacterial motility. . J Bacteriol 31: 575–580.[PubMed]
    [Google Scholar]
  44. Valverde A. , Fterich A. , Mahdhi M. , Ramírez-Bahena M. H. , Caviedes M. A. , Mars M. , Velázquez E. , Rodriguez-Llorente I. D. . ( 2010;). Paenibacillus prosopidis sp. nov., isolated from the nodules of Prosopis farcta . . Int J Syst Evol Microbiol 60: 2182–2186. [CrossRef] [PubMed]
    [Google Scholar]
  45. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. et al. ( 1987;). Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. . Int J Syst Bacteriol 37: 463–464.[CrossRef]
    [Google Scholar]
  46. Wu Y. F. , Wu Q. L. , Liu S. J. . ( 2013;). Paenibacillus taihuensis sp. nov., isolated from an eutrophic lake. . Int J Syst Evol Microbiol 63: 3652–3658. [CrossRef] [PubMed]
    [Google Scholar]
  47. Yao R. , Wang R. , Wang D. , Su J. , Zheng S. , Wang G. . ( 2014;). Paenibacillus selenitireducens sp. nov., a selenite-reducing bacterium isolated from a selenium mineral soil. . Int J Syst Evol Microbiol 64: 805–811. [CrossRef] [PubMed]
    [Google Scholar]
  48. Yoon J. H. , Kang S. J. , Oh T. K. . ( 2005;). Marinomonas dokdonensis sp. nov., isolated from sea water. . Int J Syst Evol Microbiol 55: 2303–2307. [CrossRef] [PubMed]
    [Google Scholar]
  49. Zhang J. , Wang Z. T. , Yu H. M. , Ma Y. . ( 2013;). Paenibacillus catalpae sp. nov., isolated from the rhizosphere soil of Catalpa speciosa . . Int J Syst Evol Microbiol 63: 1776–1781. [CrossRef] [PubMed]
    [Google Scholar]
  50. Zhang Y. J. , Zhang X. Y. , Mi Z. H. , Chen C. X. , Gao Z. M. , Chen X. L. , Yu Y. , Chen B. , Zhang Y. Z. . ( 2011;). Glaciecola arctica sp. nov., isolated from Arctic marine sediment. . Int J Syst Evol Microbiol 61: 2338–2341. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001159
Loading
/content/journal/ijsem/10.1099/ijsem.0.001159
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error