1887

Abstract

A Gram-stain-negative, non-motile, aerobic and rod-shaped bacterium, designated strain MME-001, was isolated from the tidal flat of Muui-do in the Republic of Korea. Phylogenetic trees based on the 16S rRNA gene sequence showed that strain MME-001 belonged to the genus in the family and that it shared the highest 16S rRNA gene sequence similarity with GJMS-35 (98.0 % similarity of the 16S rRNA gene). Growth of strain MME-001 occurred in the presence of 1.0–7.0 % (w/v) NaCl at 15−40 °C and pH 7.0–9.0, with optimal growth in the presence of 2.0–3.0 % (w/v) NaCl at 25–30 °C and pH 7.0. Ubiquinone-10 was the major respiratory quinone. Major polar lipids were phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and an unidentified lipid. The major cellular fatty acids were C 7 and C. The genomic DNA G+C content was 62 mol%. DNA-DNA hybridization values between strain MME-001 and KCTC 42111, ‘’ KCTC 32460, KCTC 22690, KCTC 12737 and KACC 17214 was 36±5, 57±7, 34±4, 18±5 and 21±3 %, respectively. Based on the phenotypic and phylogenetic taxonomical properties, this strain MME-001 represents a novel species of the genus for which the name sp. nov. is proposed. The type strain is MME-001 (=KCCM 43133=JCM 30751).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001156
2016-08-01
2020-04-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/3125.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001156&mimeType=html&fmt=ahah

References

  1. Benson H. J.. 2002; Microbiological Application: a Laboratory Manual in General Microbiology New York: McGraw-Hill;
    [Google Scholar]
  2. Cha I. T., Park S. J., Kim S. J., Kim J. G., Jung M. Y., Shin K. S., Kwon K. K., Yang S. H., Seo Y. S., Rhee S. K.. 2013; Marinoscillum luteum sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol63:3475–3480 [CrossRef][PubMed]
    [Google Scholar]
  3. Collins M. D., Jones D.. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev45:316–354[PubMed]
    [Google Scholar]
  4. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  5. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology20:406–416 [CrossRef]
    [Google Scholar]
  6. Gonzalez C., Gutierrez C., Ramirez C.. 1978; Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol24:710–715 [CrossRef][PubMed]
    [Google Scholar]
  7. González J. M., Mayer F., Moran M. A., Hodson R. E., Whitman W. B.. 1997; Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol47:369–376 [CrossRef][PubMed]
    [Google Scholar]
  8. Hyun D. W., Shin N. R., Kim M. S., Kim P. S., Kim J. Y., Whon T. W., Bae J. W.. 2013; Pseudoruegeria haliotis sp. nov., isolated from the gut of the abalone Haliotis discus hannai . Int J Syst Evol Microbiol63:4626–4632 [CrossRef][PubMed]
    [Google Scholar]
  9. Jung Y. T., Kim B. H., Oh T. K., Yoon J. H.. 2010; Pseudoruegeria lutimaris sp. nov., isolated from a tidal flat sediment, and emended description of the genus Pseudoruegeria . Int J Syst Evol Microbiol60:1177–1181 [CrossRef][PubMed]
    [Google Scholar]
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  11. Kimura M.. 1983; The Neutral Theory of Molecular Evolution Cambrige: Cambrige University Press;[CrossRef]
    [Google Scholar]
  12. Komagata K., Suzuki K.. 1987; Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol19:161–207[CrossRef]
    [Google Scholar]
  13. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp.115–175 Edited by Stackbrandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  14. Lee J. B., Kim H., Park D. S., Yang J. H., Chun Y. Y., Lee K. H., Bae K. S.. 2014; Pseudoruegeria limi sp. nov. isolated from mud flats in the Yellow Sea in Korea. Antonie Van Leeuwenhoek105:987–994 [CrossRef][PubMed]
    [Google Scholar]
  15. Leifson E.. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol85:1183–1184[PubMed]
    [Google Scholar]
  16. Mesbah M., Whitman W. B.. 1989; Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr479:297–306 [CrossRef][PubMed]
    [Google Scholar]
  17. Miller L. T.. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol16:584–586[PubMed]
    [Google Scholar]
  18. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  19. Park S., Jung Y. T., Won S. M., Yoon J. H.. 2014; Pseudoruegeria sabulilitoris sp. nov., isolated from seashore sand. Int J Syst Evol Microbiol64:3276–3281 [CrossRef][PubMed]
    [Google Scholar]
  20. Pruesse E., Peplies J., Glöckner F. O.. 2012; SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  21. Pujalte M. J., Lucena T., Ruvira M. A., Arahal D. R., Macián M. C.. 2014; Alphaproteobacteria and Betaproteobacteria . In The Prokaryotes pp.439–512 Edited by Rosenberg E., DeLong E. F., Lory S., Stackbrandt E., Thompson F.. Heidelberg, Germany: Springer;[CrossRef]
    [Google Scholar]
  22. Roh S. W., Sung Y., Nam Y. D., Chang H. W., Kim K. H., Yoon J. H., Jeon C. O., Oh H. M., Bae J. W.. 2008; Arthrobacter soli sp. nov., a novel bacterium isolated from wastewater reservoir sediment. J Microbiol46:40–44 [CrossRef][PubMed]
    [Google Scholar]
  23. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  24. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  25. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp.607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Stackebrandt E., Goebel B. M.. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol44:846–849 [CrossRef]
    [Google Scholar]
  27. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  28. Tittsler R. P., Sandholzer L. A.. 1936; The use of semi-solid agar for the detection of bacterial motility. J Bacteriol31:575–580[PubMed]
    [Google Scholar]
  29. Wayne L. G., Brenner D. J, Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464[CrossRef]
    [Google Scholar]
  30. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703[PubMed]
    [Google Scholar]
  31. Wolin E. A., Wolin M. J., Wolfe R. S.. 1963; Formation of methane by bacterial extracts. J Biol Chem238:2882–2886[PubMed]
    [Google Scholar]
  32. Yoon J. H., Lee S. Y., Kang S. J., Lee C. H., Oh T. K.. 2007; Pseudoruegeria aquimaris gen. nov., sp. nov., isolated from seawater of the East Sea in Korea. Int J Syst Evol Microbiol57:542–547 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001156
Loading
/content/journal/ijsem/10.1099/ijsem.0.001156
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error