1887

Abstract

A Gram-stain-negative, non-motile, aerobic and rod-shaped bacterium, designated strain MME-001, was isolated from the tidal flat of Muui-do in the Republic of Korea. Phylogenetic trees based on the 16S rRNA gene sequence showed that strain MME-001 belonged to the genus Pseudoruegeria in the family Rhodobacteraceae and that it shared the highest 16S rRNA gene sequence similarity with Pseudoruegeria sabulilitoris GJMS-35 (98.0 % similarity of the 16S rRNA gene). Growth of strain MME-001 occurred in the presence of 1.0–7.0 % (w/v) NaCl at 15−40 °C and pH 7.0–9.0, with optimal growth in the presence of 2.0–3.0 % (w/v) NaCl at 25–30 °C and pH 7.0. Ubiquinone-10 was the major respiratory quinone. Major polar lipids were phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and an unidentified lipid. The major cellular fatty acids were C18 : 1 ω7c and C16 : 0. The genomic DNA G+C content was 62 mol%. DNA-DNA hybridization values between strain MME-001 and P. sabulilitoris KCTC 42111, ‘ Pseudoruegeria limi ’ KCTC 32460, Pseudoruegeria lutimaris KCTC 22690, Pseudoruegeria aquimaris KCTC 12737 and Pseudoruegeriahaliotis KACC 17214 was 36±5, 57±7, 34±4, 18±5 and 21±3 %, respectively. Based on the phenotypic and phylogenetic taxonomical properties, this strain MME-001 represents a novel species of the genus Pseudoruegeria , for which the name Pseudoruegeria aestuarii sp. nov. is proposed. The type strain is MME-001 (=KCCM 43133=JCM 30751).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001156
2016-08-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/3125.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001156&mimeType=html&fmt=ahah

References

  1. Benson H. J. . ( 2002;). Microbiological Application: a Laboratory Manual in General Microbiology. New York:: McGraw-Hill;.
    [Google Scholar]
  2. Cha I. T. , Park S. J. , Kim S. J. , Kim J. G. , Jung M. Y. , Shin K. S. , Kwon K. K. , Yang S. H. , Seo Y. S. , Rhee S. K. . ( 2013;). Marinoscillum luteum sp. nov., isolated from marine sediment. . Int J Syst Evol Microbiol 63: 3475–3480. [CrossRef] [PubMed]
    [Google Scholar]
  3. Collins M. D. , Jones D. . ( 1981;). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. . Microbiol Rev 45: 316–354.[PubMed]
    [Google Scholar]
  4. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  5. Fitch W. M. . ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Systematic Zoology 20: 406–416. [CrossRef]
    [Google Scholar]
  6. Gonzalez C. , Gutierrez C. , Ramirez C. . ( 1978;). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. . Can J Microbiol 24: 710–715. [CrossRef] [PubMed]
    [Google Scholar]
  7. González J. M. , Mayer F. , Moran M. A. , Hodson R. E. , Whitman W. B. . ( 1997;). Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. . Int J Syst Bacteriol 47: 369–376. [CrossRef] [PubMed]
    [Google Scholar]
  8. Hyun D. W. , Shin N. R. , Kim M. S. , Kim P. S. , Kim J. Y. , Whon T. W. , Bae J. W. . ( 2013;). Pseudoruegeria haliotis sp. nov., isolated from the gut of the abalone Haliotis discus hannai . . Int J Syst Evol Microbiol 63: 4626–4632. [CrossRef] [PubMed]
    [Google Scholar]
  9. Jung Y. T. , Kim B. H. , Oh T. K. , Yoon J. H. . ( 2010;). Pseudoruegeria lutimaris sp. nov., isolated from a tidal flat sediment, and emended description of the genus Pseudoruegeria . . Int J Syst Evol Microbiol 60: 1177–1181. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  11. Kimura M. . ( 1983;). The Neutral Theory of Molecular Evolution. Cambrige:: Cambrige University Press;.[CrossRef]
    [Google Scholar]
  12. Komagata K. , Suzuki K. . ( 1987;). Lipids and cell-wall analysis in bacterial systematics. . Methods Microbiol 19: 161–207.[CrossRef]
    [Google Scholar]
  13. Lane D. J. . ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackbrandt E. , Goodfellow M. . Chichester:: Wiley;.
    [Google Scholar]
  14. Lee J. B. , Kim H. , Park D. S. , Yang J. H. , Chun Y. Y. , Lee K. H. , Bae K. S. . ( 2014;). Pseudoruegeria limi sp. nov. isolated from mud flats in the Yellow Sea in Korea. . Antonie Van Leeuwenhoek 105: 987–994. [CrossRef] [PubMed]
    [Google Scholar]
  15. Leifson E. . ( 1963;). Determination of carbohydrate metabolism of marine bacteria. . J Bacteriol 85: 1183–1184.[PubMed]
    [Google Scholar]
  16. Mesbah M. , Whitman W. B. . ( 1989;). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. . J Chromatogr 479: 297–306. [CrossRef] [PubMed]
    [Google Scholar]
  17. Miller L. T. . ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16: 584–586.[PubMed]
    [Google Scholar]
  18. Minnikin D. E. , O'Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2: 233–241. [CrossRef]
    [Google Scholar]
  19. Park S. , Jung Y. T. , Won S. M. , Yoon J. H. . ( 2014;). Pseudoruegeria sabulilitoris sp. nov., isolated from seashore sand. . Int J Syst Evol Microbiol 64: 3276–3281. [CrossRef] [PubMed]
    [Google Scholar]
  20. Pruesse E. , Peplies J. , Glöckner F. O. . ( 2012;). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28: 1823–1829. [CrossRef] [PubMed]
    [Google Scholar]
  21. Pujalte M. J. , Lucena T. , Ruvira M. A. , Arahal D. R. , Macián M. C. . ( 2014;). Alphaproteobacteria and Betaproteobacteria . . In The Prokaryotes, pp. 439–512. Edited by Rosenberg E. , DeLong E. F. , Lory S. , Stackbrandt E. , Thompson F. . Heidelberg, Germany:: Springer;.[CrossRef]
    [Google Scholar]
  22. Roh S. W. , Sung Y. , Nam Y. D. , Chang H. W. , Kim K. H. , Yoon J. H. , Jeon C. O. , Oh H. M. , Bae J. W. . ( 2008;). Arthrobacter soli sp. nov., a novel bacterium isolated from wastewater reservoir sediment. . J Microbiol 46: 40–44. [CrossRef] [PubMed]
    [Google Scholar]
  23. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  24. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  25. Smibert R. M. , Krieg N. R. . ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  26. Stackebrandt E. , Goebel B. M. . ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44: 846–849. [CrossRef]
    [Google Scholar]
  27. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  28. Tittsler R. P. , Sandholzer L. A. . ( 1936;). The use of semi-solid agar for the detection of bacterial motility. . J Bacteriol 31: 575–580.[PubMed]
    [Google Scholar]
  29. Wayne L. G. , Brenner D. J , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. et al. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37: 463–464.[CrossRef]
    [Google Scholar]
  30. Weisburg W. G. , Barns S. M. , Pelletier D. A. , Lane D. J. . ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173: 697–703.[PubMed]
    [Google Scholar]
  31. Wolin E. A. , Wolin M. J. , Wolfe R. S. . ( 1963;). Formation of methane by bacterial extracts. . J Biol Chem 238: 2882–2886.[PubMed]
    [Google Scholar]
  32. Yoon J. H. , Lee S. Y. , Kang S. J. , Lee C. H. , Oh T. K. . ( 2007;). Pseudoruegeria aquimaris gen. nov., sp. nov., isolated from seawater of the East Sea in Korea. . Int J Syst Evol Microbiol 57: 542–547. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001156
Loading
/content/journal/ijsem/10.1099/ijsem.0.001156
Loading

Data & Media loading...

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error