1887

Abstract

The introduction of legumes and nitrogen-fixing bacteria in tropical areas under pasture is a key factor for improvement of soil fertility. However, there are still very few studies concerning the symbionts of tropical forage legumes. We performed a polyphasic study with three strains representing the genus (BR 446, BR 510 and BR 511) isolated from the tropical perennial forage legume of the genus . On the basis of 16S rRNA gene sequences, the three strains showed highest similarity with , and in the analysis of the intergenic transcribed spacer (ITS) they showed less than 93.4 % similarity to all described species of the genus . Multilocus sequence analysis (MLSA) with three, four or five (, and ) housekeeping genes confirmed that the BR strains belong to a distinct clade, with <96.5 % nucleotide identity with other members of the genus Average nucleotide identity (ANI) of genome sequences between strain BR 446and was below the threshold for species circumscription (90.7 %). DNA-DNA hybridization resulted in Δ values over 6.7 °C with the most closely related species. Similarities among the BR strains and differences from other species were confirmed by rep-PCR analysis. Interestingly, the BR strains were grouped in the analysis of and genes, but showed higher similarity with and than with , indicating a different evolutionary history for nitrogen-fixation genes. Morpho-physiological, genotypic and genomic data supported that these BR strains represent a novel species for which the name sp. nov. is suggested. The type strain is BR 446(=CNPSo 2823=HAMBI 3668=H-8), isolated from .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001148
2016-08-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/3078.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001148&mimeType=html&fmt=ahah

References

  1. De Ley J., De Smedt J.. 1975; Improvements of the membrane filter method for DNA:rRNA hybridization. Antonie Leeuwenhoek41:287–307 [CrossRef][PubMed]
    [Google Scholar]
  2. Delamuta J. R., Ribeiro R. A., Menna P., Bangel E. V., Hungria M.. 2012; Multilocus sequence analysis (MLSA) of Bradyrhizobium strains: revealing high diversity of tropical diazotrophic symbiotic bacteria. Braz J Microbiol43:698–710 [CrossRef][PubMed]
    [Google Scholar]
  3. Delamuta J. R., Ribeiro R. A., Ormeño-Orrillo E., Melo I. S., Martínez-Romero E., Hungria M.. 2013; Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. Int J Syst Evol Microbiol63:3342–3351 [CrossRef][PubMed]
    [Google Scholar]
  4. Delamuta J. R., Ribeiro R. A., Ormeño-Orrillo E., Parma M. M., Melo I. S., Martínez-Romero E., Hungria M.. 2015; Bradyrhizobium tropiciagri sp. nov. and Bradyrhizobium embrapense sp. nov., nitrogen-fixing symbionts of tropical forage legumes. Int J Syst Evol Microbiol65:4424–4433 [CrossRef][PubMed]
    [Google Scholar]
  5. Durán D., Rey L., Mayo J., Zúñiga-Dávila D., Imperial J., Ruiz-Argüeso T., Martínez-Romero E., Ormeño-Orrillo E.. 2014; Bradyrhizobium paxllaeri sp. nov. and Bradyrhizobium icense sp. nov., nitrogen-fixing rhizobial symbionts of Lima bean (Phaseolus lunatus L.) in Peru. Int J Syst Evol Microbiol64:2072–2078 [CrossRef][PubMed]
    [Google Scholar]
  6. Eaglesham A. R. J., Ellis J. M., Evans W. R., Fleischman D. E., Hungria M., Hardy R. W. F.. 1990; The first photosynthetic N2-fixing Rhizobium: Characteristics . In Nitrogen fixationAchievements and Objectives pp.805–811 Edited by Gresshoff P. M., Evans Roth L., Stacey G., Newton W. E.. New York: Chapman and Hall;[CrossRef]
    [Google Scholar]
  7. Edgar R. C.. 2004; MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  9. Germano M. G., Menna P., Mostasso F. L., Hungria M.. 2006; RFLP analysis of the rRNA operon of a Brazilian collection of bradyrhizobial strains from 33 legume species. Int J Syst Evol Microbiol56:217–229 [CrossRef][PubMed]
    [Google Scholar]
  10. Gevers D., Cohan F. M., Lawrence J. G., Spratt B. G., Coenye T., Feil E. J., Stackebrandt E., Van de Peer Y., Vandamme P. et al. 2005; Opinion: Re-evaluating prokaryotic species. Nat Rev Microbiol3:733–739 [CrossRef][PubMed]
    [Google Scholar]
  11. Gonzalez J. M., Saiz-Jimenez C.. 2005; A simple fluorimetric method for the estimation of DNA-DNA relatedness between closely related microorganisms by thermal denaturation temperatures. Extremophiles9:75–79 [CrossRef][PubMed]
    [Google Scholar]
  12. Gurevich A., Saveliev V., Vyahhi N., Tesler G.. 2013; QUAST: quality assessment tool for genome assemblies. Bioinformatics29:1072–1075 [CrossRef][PubMed]
    [Google Scholar]
  13. Helene L. C., Delamuta J. R., Ribeiro R. A., Ormeño-Orrillo E., Rogel M. A., Martínez-Romero E., Hungria M.. 2015; Bradyrhizobium viridifuturi sp. nov., encompassing nitrogen-fixing symbionts of legumes used for green manure and environmental services. Int J Syst Evol Microbiol65:4441–4448 [CrossRef][PubMed]
    [Google Scholar]
  14. Hungria M., Loureiro M. F., Mendes I. C., Campo R. J., Graham P. H.. 2005; Inoculant preparation, production and application. In Nitrogen Fixation in Agriculture, Forestry, Ecology and the Environment pp.223–254 Edited by Werner W., Newton W. E.. Dordrecht, Amsterdam: Springer;[CrossRef]
    [Google Scholar]
  15. Hungria M., Menna P., Delamuta J. R. M.. 2015; Bradyrhizobium, the ancestor of all rhizobia: phylogeny of housekeeping and nitrogen-fixation genes. In Biological Nitrogen Fixation pp.191–202 Edited by de Bruijn F. J.. New Jersey: John Wiley & Sons, Inc;[CrossRef]
    [Google Scholar]
  16. Islam M. S., Kawasaki H., Muramatsu Y., Nakagawa Y., Seki T.. 2008; Bradyrhizobium iriomotense sp. nov., isolated from a tumor-like root of the legume Entada koshunensis from Iriomote Island in Japan. Biosci Biotechnol Biochem72:1416–1429 [CrossRef][PubMed]
    [Google Scholar]
  17. Kaschuk G., Hungria M., Andrade D. S., Campo R. J.. 2006; Genetic diversity of rhizobia associated with common bean (Phaseolus vulgaris L.) grown under no-tillage and conventional systems in Southern Brazil. Appl Soil Ecol32:210–220 [CrossRef]
    [Google Scholar]
  18. Lloret L., Martínez-Romero E.. 2005; Evolución y filogenia de Rhizobium . Rev Latinoam Microbiol47:43–60
    [Google Scholar]
  19. Menna P., Barcellos F. G., Hungria M.. 2009; Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnII, recA, atpD and dnaK genes. Int J Syst Evol Microbiol59:2934–2950 [CrossRef][PubMed]
    [Google Scholar]
  20. Menna P., Hungria M.. 2011; Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer. Int J Syst Evol Microbiol61:3052–3067 [CrossRef][PubMed]
    [Google Scholar]
  21. Moreira A. P., Pereira N., Thompson F. L.. 2011; Usefulness of a real-time PCR platform for G+C content and DNA-DNA hybridization estimations in vibrios. Int J Syst Evol Microbiol61:2379–2383 [CrossRef][PubMed]
    [Google Scholar]
  22. Norris D. O.. 1965; Acid production by Rhizobium a unifying concept. Plant Soil22:143–166 [CrossRef]
    [Google Scholar]
  23. Ormeño-Orrillo E., Hungria M., Martínez-Romero E.. 2013; Dinitrogen-fixing prokaryotes. In The Prokaryotes – Prokaryotic Physiology and Biochemistry pp.427–451 . Edited by Rosenberg E., De Long E. F., Lory S., Stackebrandt E., Thompson F.. Berlin Heidelberg: Springer-Verlag;
    [Google Scholar]
  24. Parker M. A.. 2015; The spread of Bradyrhizobium lineages across host legume clades From Abarema to Zygia . Microb Ecol69:630–640[CrossRef]
    [Google Scholar]
  25. Radl V., Simões-Araújo J. L., Leite J., Passos S. R., Martins L. M., Xavier G. R., Rumjanek N. G., Baldani J. I., Zilli J. E.. 2014; Microvirga vignae sp. nov., a root nodule symbiotic bacterium isolated from cowpea grown in semi-arid Brazil. Int J Syst Evol Microbiol64:725–730 [CrossRef][PubMed]
    [Google Scholar]
  26. Richter M., Rosselló-Móra R.. 2009; Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  27. Rivas R., Willems A., Palomo J. L., García-Benavides P., Mateos P. F., Martínez-Molina E., Gillis M., Velázquez E.. 2004; Bradyrhizobium betae sp. nov., isolated from roots of Beta vulgaris affected by tumour-like deformations. Int J Syst Evol Microbiol54:1271–1275 [CrossRef][PubMed]
    [Google Scholar]
  28. Roma Neto I. V., Ribeiro R. A., Hungria M.. 2010; Genetic diversity of elite rhizobial strains of subtropical and tropical legumes based on the 16S rRNA and glnII genes. World J Microbiol Biotechnol26:1291–1302 [CrossRef][PubMed]
    [Google Scholar]
  29. Rosselló-Mora R., Amann R.. 2001; The species concept for prokaryotes. FEMS Microbiol Rev25:39–67[PubMed][CrossRef]
    [Google Scholar]
  30. Schleifer K. H.. 2009; Classification of Bacteria and Archaea: past, present and future. Syst Appl Microbiol32:533–542 [CrossRef][PubMed]
    [Google Scholar]
  31. Tamura K., Nei M.. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol10:512–526[PubMed]
    [Google Scholar]
  32. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  33. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D.. 2000; Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol50:787–801 [CrossRef][PubMed]
    [Google Scholar]
  34. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P.. 2010; Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol60:249–266 [CrossRef][PubMed]
    [Google Scholar]
  35. Vargas M. A. T., Döbereiner J.. 1974; Efeito de níveis crescentes de calagem, manganês, magnésio e boro na simbiose e desenvolvimento vegetativo do Stylosanthes guianensis . Pesq Agropec Bras9:21–28
    [Google Scholar]
  36. Vincent J. M.. 1970; Manual for the Practical Study of Root Nodule Bacteria Oxford, UK: Blackwell Scientific; (IBP Handbook No. 15)
    [Google Scholar]
  37. Wang R., Chang Y. L., Zheng W. T., Zhang D., Zhang X. X., Sui X. H., Wang E. T., Hu J. Q., Zhang L. Y. et al. 2013; Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Syst Appl Microbiol36:101–105 [CrossRef][PubMed]
    [Google Scholar]
  38. Willems A., Coopman R., Gillis M.. 2001; Comparison of sequence analysis of 16S-23S rDNA spacer regions, AFLP analysis and DNA-DNA hybridizations in Bradyrhizobium . Int J Syst Evol Microbiol51:623–632 [CrossRef][PubMed]
    [Google Scholar]
  39. Willems A., Munive A., de Lajudie P., Gillis M.. 2003; In most Bradyrhizobium groups sequence comparison of 16S-23S rDNA internal transcribed spacer regions corroborates DNA-DNA hybridizations. Syst Appl Microbiol26:203–210 [CrossRef][PubMed]
    [Google Scholar]
  40. Xu L. M., Ge C., Cui Z., Li J., Fan H.. 1995; Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int J Syst Bacteriol45:706–711 [CrossRef][PubMed]
    [Google Scholar]
  41. Zhang Y. M., Li Y., Chen W. F., Wang E. T., Sui X. H., Li Q. Q., Zhang Y. Z., Zhou Y. G., Chen W. X.. 2012; Bradyrhizobium huanghuaihaiense sp. nov., an effective symbiotic bacterium isolated from soybean (Glycine max L.) nodules. Int J Syst Evol Microbiol62:1951–1957 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001148
Loading
/content/journal/ijsem/10.1099/ijsem.0.001148
Loading

Data & Media loading...

Supplements

Supplementary File 1

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error